POSITIVE SOLUTION FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH NONLOCAL MULTI-POINT CONDITION

被引:16
作者
Borisut, Piyachat [1 ,2 ]
Kumam, Poom [1 ,2 ,3 ]
Ahmed, Idris [1 ,2 ,4 ]
Sitthithakerngkiet, Kanokwan [5 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, KMUTT Fixed Point Res Lab, Ctr Excellence Theoret & Computat Sci TaCS CoE, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] King Mongkuts Univ Technol Thonburi KMUTT, Dept Math, Fac Sci, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Sule Lamido Univ, Dept Math & Comp Sci, Kafin Hausa, Jigawa State, Nigeria
[5] King Mongkuts Univ Technol North Bangkok KMUTNB, Intelligent & Nonlinear Dynam Innovat Res Ctr, Dept Math, Fac Appl Sci, Bangkok 10800, Thailand
来源
FIXED POINT THEORY | 2020年 / 21卷 / 02期
关键词
Boundary value problems; Riemann-Liouville fractional derivative; fixed point theorems; EXISTENCE;
D O I
10.24193/fpt-ro.2020.2.30
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study and consider the positive solution of fractional differential equation with nonlocal multi-point conditions of the from: D-RL(0+)q u(t) + g(t)f(t, u(t)) = 0, t is an element of (0, 1) u((k))(0) = 0, u(1) = Sigma(m)(i=1) beta(i) (RL)D(0+)(pi)u(eta(i)) where n - 1 < q < n, n >= 2, n - 1 < p(i) < n, q > p(i) m,n is an element of N, k = 0,1, ..., n - 2, 0 < eta(1)< eta(2) < ... < kappa beta(i) <= 0, kappa is an element of (0, 1], D-RL(0+)q, D-RL(0+)pi are the Riemann-Liouville fractional derivative of order q, pi, f: [0, 1] x C([0, 1], E) -> E, E be Banach space and g: (0, 1) -> R+ are continuous functions. The main tools for finding positive solutions of the above problem are the fixed point theorems of Guo-Krasnoselskii and of Boyd and Wong. An example is included to illustrate the applicability of our results.
引用
收藏
页码:427 / 440
页数:14
相关论文
共 15 条
[1]  
Ahmad B., 2017, Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities
[2]  
[Anonymous], 1996, J FRACT CALC
[3]   Existence of positive solutions of nonlinear fractional differential equations [J].
Babakhani, A ;
Daftardar-Gejji, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 278 (02) :434-442
[4]   On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation [J].
Baleanu, Dumitru ;
Rezapour, Shahram ;
Saberpour, Zohreh .
BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
[5]   Nonlinear Caputo Fractional Derivative with Nonlocal Riemann-Liouville Fractional Integral Condition Via Fixed Point Theorems [J].
Borisut, Piyachat ;
Kumam, Poom ;
Ahmed, Idris ;
Sitthithakerngkiet, Kanokwan .
SYMMETRY-BASEL, 2019, 11 (06)
[6]   Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations [J].
Deng, Jiqin ;
Ma, Lifeng .
APPLIED MATHEMATICS LETTERS, 2010, 23 (06) :676-680
[7]  
Hollon C. A, 2015, DYNAMICAL SYSTEMS DI, P615
[8]  
Kilbas AA., 2006, THEORY APPL FRACTION
[9]  
Miller K.S., 1993, J FRACTIONAL CALCULU, V3, P49
[10]  
Podlubny I., 1998, An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications