Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures

被引:502
作者
Gong, Yongji [1 ,2 ]
Lei, Sidong [2 ]
Ye, Gonglan [2 ]
Li, Bo [2 ]
He, Yongmin [2 ]
Keyshar, Kunttal [2 ]
Zhang, Xiang [2 ]
Wang, Qizhong [2 ]
Lou, Jun [2 ]
Liu, Zheng [3 ]
Vajtai, Robert [2 ]
Zhou, Wu [4 ]
Ajayan, Pulickel M. [1 ,2 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[4] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
关键词
2D heterostructures; two-step growth; MoSe2; WSe2; CVD; HEXAGONAL BORON-NITRIDE; INPLANE HETEROSTRUCTURES; SINGLE-LAYER; EPITAXIAL-GROWTH; GRAPHENE; MOS2; GENERATION; CONVERSION; DIODES; FETS;
D O I
10.1021/acs.nanolett.5b02423
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two dimensional (2D) materials have attracted great attention due to their unique properties and atomic thickness. Although various 2D materials have been successfully synthesized with different optical and electrical properties, a strategy for fabricating 2D heterostructures must be developed in order to construct more complicated devices for practical applications. Here we demonstrate for the first time a two-step chemical vapor deposition (CVD) method for growing transition-metal dichalcogenide (TMD) heterostructures, where MoSe2 was synthesized first and followed by an epitaxial growth of WSe2 on the edge and on the top surface of MoSe2. Compared to previously reported one-step growth methods, this two-step growth has the capability of spatial and size control of each 2D component, leading to much larger (up to 169 mu m) heterostructure size, and cross-contamination can be effectively minimized. Furthermore, this two-step growth produces well-defined 2H and 3R stacking in the WSe2/MoSe2 bilayer regions and much sharper in-plane interfaces than the previously reported MoSe2/WSe2 heterojunctions obtained from one-step growth methods. The resultant heterostructures with WSe2/MoSe2 bilayer and the exposed MoSe2 monolayer display rectification characteristics of a p-n junction, as revealed by optoelectronic tests, and an internal quantum efficiency of 91% when functioning as a photodetector. A photovoltaic effect without any external gates was observed, showing incident photon to converted electron (IPCE) efficiencies of approximately 0.12%, providing application potential in electronics and energy harvesting.
引用
收藏
页码:6135 / 6141
页数:7
相关论文
共 35 条
[1]  
Baugher BWH, 2014, NAT NANOTECHNOL, V9, P262, DOI [10.1038/nnano.2014.25, 10.1038/NNANO.2014.25]
[2]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[3]  
Duan XD, 2014, NAT NANOTECHNOL, V9, P1024, DOI [10.1038/nnano.2014.222, 10.1038/NNANO.2014.222]
[4]   QUANTUM CASCADE LASER [J].
FAIST, J ;
CAPASSO, F ;
SIVCO, DL ;
SIRTORI, C ;
HUTCHINSON, AL ;
CHO, AY .
SCIENCE, 1994, 264 (5158) :553-556
[5]  
Fang H, 2012, NANO LETT, V12, P3788, DOI [10.1021/nl301702r, 10.1021/nl3040674]
[6]   Boron nitride substrates for high mobility chemical vapor deposited graphene [J].
Gannett, W. ;
Regan, W. ;
Watanabe, K. ;
Taniguchi, T. ;
Crommie, M. F. ;
Zettl, A. .
APPLIED PHYSICS LETTERS, 2011, 98 (24)
[7]  
Georgiou T, 2013, NAT NANOTECHNOL, V8, P100, DOI [10.1038/NNANO.2012.224, 10.1038/nnano.2012.224]
[8]  
Gong YJ, 2014, NAT MATER, V13, P1135, DOI [10.1038/nmat4091, 10.1038/NMAT4091]
[9]   Band Gap Engineering and Layer-by-Layer Mapping of Selenium-Doped Molybdenum Disulfide [J].
Gong, Yongji ;
Liu, Zheng ;
Lupini, Andrew R. ;
Shi, Gang ;
Lin, Junhao ;
Najmaei, Sina ;
Lin, Zhong ;
Elias, Ana Laura ;
Berkdemir, Ayse ;
You, Ge ;
Terrones, Humberto ;
Terrones, Mauricio ;
Vajtai, Robert ;
Pantelides, Sokrates T. ;
Pennycook, Stephen J. ;
Lou, Jun ;
Zhou, Wu ;
Ajayan, Pulickel M. .
NANO LETTERS, 2014, 14 (02) :442-449
[10]   Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers [J].
Gong, Yongji ;
Shi, Gang ;
Zhang, Zhuhua ;
Zhou, Wu ;
Jung, Jeil ;
Gao, Weilu ;
Ma, Lulu ;
Yang, Yang ;
Yang, Shubin ;
You, Ge ;
Vajtai, Robert ;
Xu, Qianfan ;
MacDonald, Allan H. ;
Yakobson, Boris I. ;
Lou, Jun ;
Liu, Zheng ;
Ajayan, Pulickel M. .
NATURE COMMUNICATIONS, 2014, 5