Outer Automorphisms of Algebraic Groups and Determining Groups by Their Maximal Tori

被引:0
作者
Garibaldi, Skip [1 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
关键词
COMMENSURABILITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:227 / 237
页数:11
相关论文
共 16 条
[1]   LIE-ALGEBRAS OF TYPE-D4 OVER NUMBER-FIELDS [J].
ALLISON, BN .
PACIFIC JOURNAL OF MATHEMATICS, 1992, 156 (02) :209-250
[2]  
Bourbaki N., 2002, Elements of Mathematics, P4, DOI DOI 10.1007/978-3-540-89394-3
[3]   Geodesics and commensurability classes of arithmetic hyperbolic 3-manifolds [J].
Chinburg, T. ;
Hamilton, E. ;
Long, D. D. ;
Reid, A. W. .
DUKE MATHEMATICAL JOURNAL, 2008, 145 (01) :25-44
[4]  
Demazure Michel A., 1970, Lecture Notes in Mathematics, V151
[5]  
Jacobson N., 1971, LECT NOTES PURE APPL, V1
[6]  
KNUS M.-A., 1998, Amer. Math. Soc. Colloq. Publ., V44
[7]   Local-global principles for embedding of fields with involution into simple algebras with involution [J].
Prasad, Gopal ;
Rapinchuk, Andrei S. .
COMMENTARII MATHEMATICI HELVETICI, 2010, 85 (03) :583-645
[8]   WEAKLY COMMENSURABLE ARITHMETIC GROUPS AND ISOSPECTRAL LOCALLY SYMMETRIC SPACES [J].
Prasad, Gopal ;
Rapinchuk, Andrei S. .
PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 109, 2009, (109) :113-184
[9]  
RAPINCHUK A, 1994, ALGEBRAIC GROUPS NUM, V139
[10]   ISOSPECTRALITY AND COMMENSURABILITY OF ARITHMETIC HYPERBOLIC 2-MANIFOLD AND 3-MANIFOLD [J].
REID, AW .
DUKE MATHEMATICAL JOURNAL, 1992, 65 (02) :215-228