Bernstein Global Optimization Approach for Distributed Optimal Power Flow Problem Incorporating Emission Costs

被引:0
作者
Patil, B. V. [1 ]
Sampath, L. P. M. I. [2 ]
Ranjan, Bharath K. [3 ]
Krishnan, Ashok [4 ]
Eddy, Y. S. Foo [4 ]
机构
[1] Cambridge Ctr Adv Res & Educ Singapore CARES, Singapore, Singapore
[2] Nanyang Technol Univ, Interdisciplinary Grad Sch, Singapore, Singapore
[3] Amrita Vishwa Vidyapeetham, Dept Elect & Elect Engn, Amritapuri, India
[4] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
来源
PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCEMENTS IN POWER AND ENERGY (TAP ENERGY): EXPLORING ENERGY SOLUTIONS FOR AN INTELLIGENT POWER GRID | 2017年
基金
新加坡国家研究基金会;
关键词
Bernstein form; carbon dioxide emissions; distributed optimal power flow; g lobal o ptimization; optimal power flow;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper proposes a distributed architecture for solving the optimal power flow (OPF) p roblem i n power systems operation. Specifically, a c entralized s olution approach (to solve single optimization problem) presented in the literature is posed as solving different local optimization problems. The Bernstein global optimization approach is used to solve these local optimization problems in a co-ordinated and distributed fashion. The proposed approach is implemented on a typical 3-bus power system, wherein the cost of CO2 emissions is also considered. The overall results obtained are satisfactory.
引用
收藏
页数:6
相关论文
共 21 条
[1]  
[Anonymous], IEEE T SYST MAN CYBE
[2]   Semidefinite programming for optimal power flow problems [J].
Bai, Xiaoqing ;
Wei, Hua ;
Fujisawa, Katsuki ;
Wang, Yong .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2008, 30 (6-7) :383-392
[3]   Local Solutions of the Optimal Power Flow Problem [J].
Bukhsh, Waqquas A. ;
Grothey, Andreas ;
McKinnon, Ken I. M. ;
Trodden, Paul A. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (04) :4780-4788
[4]   Critical review of recent advances and further developments needed in AC optimal power flow [J].
Capitanescu, Florin .
ELECTRIC POWER SYSTEMS RESEARCH, 2016, 136 :57-68
[5]   Distributed Optimal Power Flow Using ADMM [J].
Erseghe, Tomaso .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (05) :2370-2380
[6]   Optimal power flow: A bibliographic survey II Non-deterministic and hybrid methods [J].
Frank, Stephen ;
Steponavice, Ingrid ;
Rebennack, Steffen .
Energy Systems, 2012, 3 (03) :259-289
[7]   Optimal power flow: A bibliographic survey I Formulations and deterministic methods [J].
Frank S. ;
Steponavice I. ;
Rebennack S. .
Energy Systems, 2012, 3 (03) :221-258
[8]  
Gopalakrishnan A, 2012, ANN ALLERTON CONF, P609, DOI 10.1109/Allerton.2012.6483274
[9]  
Jie Liu, 2015, 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). Proceedings, P1, DOI 10.1109/ISGT.2015.7131881
[10]   Coarse-grained distributed optimal power flow [J].
Kim, BH ;
Baldick, R .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1997, 12 (02) :932-939