Prognostic value of preoperative dynamic contrast-enhanced magnetic resonance imaging in epithelial ovarian cancer

被引:16
|
作者
Lindgren, Auni [1 ]
Anttila, Maarit [1 ,2 ]
Arponen, Otso [3 ]
Rautiainen, Suvi [3 ]
Kononen, Mervi [3 ,4 ]
Vanninen, Ritva [3 ,5 ,6 ]
Sallinen, Hanna [2 ]
机构
[1] Univ Eastern Finland, Fac Hlth Sci, Sch Med, Inst Clin Med Obstet & Gynecol, Kuopio, Finland
[2] Kuopio Univ Hosp, Dept Gynecol, Kuopio, Finland
[3] Kuopio Univ Hosp, Dept Clin Radiol, Kuopio, Finland
[4] Kuopio Univ Hosp, Dept Clin Neurophysiol, Kuopio, Finland
[5] Univ Eastern Finland, Fac Hlth Sci, Sch Med, Inst Clin Med,Clin Radiol, Kuopio, Finland
[6] Univ Eastern Finland, Canc Ctr Eastern Finland, Kuopio, Finland
关键词
Ovarian cancer; Magnetic resonance imaging; Dynamic contrast-enhanced imaging; Biomarkers; Prognosis; APPARENT DIFFUSION-COEFFICIENT; TUMOR HETEROGENEITY; COMPUTED-TOMOGRAPHY; WEIGHTED MRI; PARAMETERS; CARCINOMA;
D O I
10.1016/j.ejrad.2019.03.023
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: To investigate whether semi-quantitative and pharmacokinetic perfusion dynamic contrast-enhanced (DCE) parameters are associated with traditional prognostic factors and can predict clinical outcome in ovarian cancer (OC). Methods: This prospective study, approved by local ethical committee, enrolled 38 patients with primary OC, 2011-2014. After preoperative DCE-MRI (3.0 T), two observers measured perfusion (K-trans, K-ep, V-e, V-p) and semi-quantitative parameters (area under the curve, peak, time-to-peak) by drawing regions of interest (ROIs) covering the large solid lesion (L-ROI) and the most enhancing small area (S-ROI) (NordicICE platform). Kruskal-Wallis was used to analyze associations between MRI parameters and classified prognostic factors. Results: Mean K-trans values were higher in high-grade serous OC than in other types (L-ROI, P = 0.041; S-ROI, P = 0.018), and lower mean K-trans values predicted residual tumor (L-ROI P = 0.030; S-ROI, P = 0.012). Higher minimum V-p values were associated with higher International Federation of Gynecology and Obstetrics (FIGO) stage (S-ROI, P = 0.023). Shorter recurrence-free survival was predicted by higher V-e (minimum L-ROI, P = 0.035; maximum S-ROI, P = 0.046), V-p (maximum S-ROI, P = 0.033), and lower time-to-peak (maximum S-ROI, P = 0.047) in Kaplan-Meier analysis. Multiparametric MRI variables combining DCE and diffusion weighted data were also predictive for survival. Conclusion: DCE-MRI parameters may represent imaging biomarkers for predicting tumor aggressiveness and prognosis in OC. Higher K-trans levels were associated with better results in cytoreductive surgery but with earlier recurrence.
引用
收藏
页码:66 / 73
页数:8
相关论文
共 50 条
  • [21] Antivascular cancer treatments: functional assessments by dynamic contrast-enhanced magnetic resonance imaging
    Padhani, AR
    Leach, MO
    ABDOMINAL IMAGING, 2005, 30 (03): : 324 - 341
  • [22] A direct comparison of contrast-enhanced ultrasound and dynamic contrast-enhanced magnetic resonance imaging for prostate cancer detection and prediction of aggressiveness
    Alexander D. J. Baur
    Julia Schwabe
    Julian Rogasch
    Andreas Maxeiner
    Tobias Penzkofer
    Carsten Stephan
    Marc Rudl
    Bernd Hamm
    Ernst-Michael Jung
    Thom Fischer
    European Radiology, 2018, 28 : 1949 - 1960
  • [23] The value of contrast-enhanced magnetic resonance imaging for diagnosis of extrahepatic cholangiocarcinoma
    Yang, Ting
    Wei, Hong
    Chen, Jie
    Jiang, Hanyu
    Chen, Yidi
    Song, Bin
    HELIYON, 2024, 10 (01)
  • [24] Dynamic contrast enhanced-magnetic resonance imaging for the early evaluation of the response to docetaxel in rats with epithelial ovarian cancer
    Yuan, Su-Juan
    Qiao, Tian-Kui
    Qiang, Jin-Wei
    Cai, Song-Qi
    ONCOLOGY REPORTS, 2019, 41 (06) : 3335 - 3346
  • [25] Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Pancreatic Ductal Adenocarcinoma at 3.0-T Magnetic Resonance: Correlation With Histopathology
    Liu, Kefu
    Xie, Ping
    Peng, Weijun
    Zhou, Zhengrong
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2015, 39 (01) : 13 - 18
  • [26] Value of quantitative dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging in predicting extramural venous invasion in locally advanced gastric cancer and prognostic significance
    Zhu, Yongjian
    Zhou, Yutao
    Zhang, Wen
    Xue, Liyan
    Li, Ying
    Jiang, Jun
    Zhong, Yuxin
    Wang, Sicong
    Jiang, Liming
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (01) : 328 - 340
  • [27] Improving Bladder Cancer Imaging Using 3-T Functional Dynamic Contrast-Enhanced Magnetic Resonance Imaging
    Nguyen, Huyen T.
    Pohar, Kamal S.
    Jia, Guang
    Shah, Zarine K.
    Mortazavi, Amir
    Zynger, Debra L.
    Wei, Lai
    Clark, Daniel
    Yang, Xiangyu
    Knopp, Michael V.
    INVESTIGATIVE RADIOLOGY, 2014, 49 (06) : 390 - 395
  • [28] Value of dynamic contrast-enhanced magnetic resonance imaging in combination with mammography for screening early-stage breast cancer
    Su, Weiwei
    Hou, Xiaoming
    Yu, Bo
    AFRICAN HEALTH SCIENCES, 2023, 23 (02) : 290 - 297
  • [29] Maximum Entropy Approach in Dynamic Contrast-Enhanced Magnetic Resonance Imaging
    Farsani, Zahra Amini
    Schmid, Volker J.
    METHODS OF INFORMATION IN MEDICINE, 2017, 56 (06) : 461 - 468
  • [30] Dynamic contrast-enhanced magnetic resonance imaging for head and neck cancers
    Elhalawani, Hesham
    Ger, Rachel B.
    Mohamed, Abdallah S. R.
    Awan, Musaddiq J.
    Ding, Yao
    Li, Kimberly
    Fave, Xenia J.
    Beers, Andrew L.
    Driscoll, Brandon
    Hormuth, David A., II
    van Houdt, Petra J.
    He, Renjie
    Zhou, Shouhao
    Mathieu, Kelsey B.
    Li, Heng
    Coolens, Catherine
    Chung, Caroline
    Bankson, James A.
    Huang, Wei
    Wang, Jihong
    Sandulache, Vlad C.
    Lai, Stephen Y.
    Howell, Rebecca M.
    Stafford, R. Jason
    Yankeelov, Thomas E.
    van der Heide, Uulke A.
    Frank, Steven J.
    Barboriak, Daniel P.
    Hazle, John D.
    Court, Laurence E.
    Kalpathy-Cramer, Jayashree
    Fuller, Clifton D.
    SCIENTIFIC DATA, 2018, 5