Uniqueness of traveling wave solutions for a biological reaction-diffusion equation

被引:12
作者
Huang, WZ [1 ]
机构
[1] Univ Alabama, Dept Math Sci, Huntsville, AL 35899 USA
基金
美国国家科学基金会;
关键词
reaction-diffusion equations; microbial growth in flow reactor; traveling wave solutions; uniqueness;
D O I
10.1016/j.jmaa.2005.04.084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of traveling wave solutions for a reaction-diffusion, which serves as models for microbial growth in a flow reactor and for mathematical epidemiology, was previously confirmed. However, the problem on the uniqueness of traveling wave solutions remains open. In this paper we give a complete proof of the uniqueness of traveling wave solutions. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:42 / 59
页数:18
相关论文
共 12 条
[1]  
AI S, 2005, IN PRESS P ROY SOC E
[2]  
Bailey N, 1975, MATH THEORY INFECT D
[3]  
Ballyk M, 1998, SIAM J APPL MATH, V59, P573
[4]   TRAVELING WAVES FOR A SIMPLE DIFFUSIVE EPIDEMIC MODEL [J].
HOSONO, Y ;
ILYAS, B .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (07) :935-966
[5]  
Hosono Y., 1994, NONLINEAR WORLD, V1, P277
[6]  
Huang W., 2004, J. of Dynamics and DifF. Eq, V16, P745, DOI DOI 10.1007/s10884-004-6115-x
[7]  
KAREN A, 1984, NONLIN ANAL, V8, P851
[8]   TRAVELING WAVES IN A SIMPLE POPULATION-MODEL INVOLVING GROWTH AND DEATH [J].
KENNEDY, CR ;
ARIS, R .
BULLETIN OF MATHEMATICAL BIOLOGY, 1980, 42 (03) :397-429
[9]   THE GROWTH OF PURE AND SIMPLE MICROBIAL COMPETITORS IN A MOVING DISTRIBUTED MEDIUM [J].
KUNG, CM ;
BALTZIS, BC .
MATHEMATICAL BIOSCIENCES, 1992, 111 (02) :295-313
[10]   Traveling waves in a bio-reactor model [J].
Smith, HL ;
Zhao, XQ .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2004, 5 (05) :895-909