Uncertainty Quantification for Markov Processes via Variational Principles and Functional Inequalities

被引:6
作者
Birrell, Jeremiah [1 ]
Rey-Bellet, Luc [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
uncertainty quantification; Markov process; relative entropy; Poincare inequality; log-Sobolev inequality; Liapunov function; Bernstein inequality; LOGARITHMIC SOBOLEV INEQUALITIES; INFORMATION INEQUALITIES; SENSITIVITY-ANALYSIS; POINCARE INEQUALITY; KINETIC-EQUATIONS; CONVERGENCE; HYPOCOERCIVITY; PERTURBATION; BOUNDS;
D O I
10.1137/19M1237429
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Information-theory based variational principles have proven effective at providing scalable uncertainty quantification (i.e., robustness) bounds for quantities of interest in the presence of nonparametric model-form uncertainty. In this work, we combine such variational formulas with functional inequalities (Poincare, log-Sobolev, Liapunov functions) to derive explicit uncertainty quantification bounds for time-averaged observables, comparing a Markov process to a second (not necessarily Markov) process. These bounds are well behaved in the infinite-time limit and apply to steady-states of both discrete and continuous-time Markov processes.
引用
收藏
页码:539 / 572
页数:34
相关论文
共 57 条
[31]   Robust risk measurement and model risk [J].
Glasserman, Paul ;
Xu, Xingbo .
QUANTITATIVE FINANCE, 2014, 14 (01) :29-58
[32]  
Gourgoulias K., 2017, PREPRINT
[33]   INFORMATION METRICS FOR LONG-TIME ERRORS IN SPLITTING SCHEMES FOR STOCHASTIC DYNAMICS AND PARALLEL KINETIC MONTE CARLO [J].
Gourgoulias, Konstantinos ;
Katsoulakis, Markos A. ;
Rey-Bellet, Luc .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (06) :A3808-A3832
[34]   Transportation-information inequalities for Markov processes [J].
Guillin, Arnaud ;
Leonard, Christian ;
Wu, Liming ;
Yao, Nian .
PROBABILITY THEORY AND RELATED FIELDS, 2009, 144 (3-4) :669-695
[35]  
Hairer M., 2010, Lecture notes
[36]  
Hairer M, 2011, PROG PROBAB, V63, P109
[37]  
Huggins J. H., 2016, PREPRINT
[38]  
Janssen J., 2010, APPL SEMIMARKOV PROC, DOI [10.1007/0-387-29548-8, DOI 10.1007/0-387-29548-8]
[39]  
Johndrow J. E., 2015, PREPRINT
[40]  
Karatzas I., 1991, BROWNIAN MOTION STOC, DOI [10.1007/978-1-4612-0949-2, DOI 10.1007/978-1-4612-0949-2]