Machine learning in breast MRI

被引:111
作者
Reig, Beatriu [1 ]
Heacock, Laura [2 ]
Geras, Krzysztof J. [2 ]
Moy, Linda [2 ,3 ]
机构
[1] NYU, Dept Radiol, Sch Med, 560 1St Ave, New York, NY 10016 USA
[2] NYU, Dept Radiol, Sch Med, Bernard & Irene Schwartz Ctr Biomed Imaging, 560 1St Ave, New York, NY 10016 USA
[3] NYU, Sch Med, Ctr Adv Imaging Innovat & Res CAI2 R, New York, NY USA
基金
美国国家卫生研究院;
关键词
breast; MR; machine learning; deep learning; artificial intelligence; radiomics; BACKGROUND PARENCHYMAL ENHANCEMENT; CARCINOMA IN-SITU; CANCER MOLECULAR SUBTYPE; RECURRENCE-FREE SURVIVAL; SUPPORT VECTOR MACHINE; DCE-MRI; NEOADJUVANT CHEMOTHERAPY; PREOPERATIVE PREDICTION; FIBROGLANDULAR TISSUE; MAMMOGRAPHIC DENSITY;
D O I
10.1002/jmri.26852
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Machine-learning techniques have led to remarkable advances in data extraction and analysis of medical imaging. Applications of machine learning to breast MRI continue to expand rapidly as increasingly accurate 3D breast and lesion segmentation allows the combination of radiologist-level interpretation (eg, BI-RADS lexicon), data from advanced multiparametric imaging techniques, and patient-level data such as genetic risk markers. Advances in breast MRI feature extraction have led to rapid dataset analysis, which offers promise in large pooled multiinstitutional data analysis. The object of this review is to provide an overview of machine-learning and deep-learning techniques for breast MRI, including supervised and unsupervised methods, anatomic breast segmentation, and lesion segmentation. Finally, it explores the role of machine learning, current limitations, and future applications to texture analysis, radiomics, and radiogenomics. Technical Efficacy Stage:2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:998-1018.
引用
收藏
页码:998 / 1018
页数:21
相关论文
共 126 条
[61]   HER2-Orientated Therapy in Early and Metastatic Breast Cancer [J].
Iborra, Severine ;
Stickeler, Elmar .
BREAST CARE, 2016, 11 (06) :392-397
[62]  
Ivanovska T, 2019, INT J COMPUT ASSIST
[63]   Discrimination of malignant and benign breast masses using automatic segmentation and features extracted from dynamic contrast-enhanced and diffusion-weighted MRI [J].
Jiang, Xinhua ;
Xie, Fei ;
Liu, Lizhi ;
Peng, Yanxia ;
Cai, Hongmin ;
Li, Li .
ONCOLOGY LETTERS, 2018, 16 (02) :1521-1528
[64]   Predicting Survival and Early Clinical Response to Primary Chemotherapy for Patients With Locally Advanced Breast Cancer Using DCE-MRI [J].
Johansen, Roar ;
Jensen, Line R. ;
Rydand, Jana ;
Goa, Pal E. ;
Kvistad, Kjell A. ;
Bathen, Tone F. ;
Axelson, David E. ;
Lundgren, Steinar ;
Gribbestad, Ingrid S. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2009, 29 (06) :1300-1307
[65]   Correlation between DCE-MRI radiomics features and Ki-67 expression in invasive breast cancer [J].
Juan, Ma-Wen ;
Yu, Ji ;
Peng, Guo-Xin ;
Jun, Liu-Jun ;
Feng, Sun-Peng ;
Fang, Liu-Pei .
ONCOLOGY LETTERS, 2018, 16 (04) :5084-5090
[66]   Machine Learning Study of Several Classifiers Trained With Texture Analysis Features to Differentiate Benign from Malignant Soft-Tissue Tumors in T1-MRI Images [J].
Juntu, Jaber ;
Sijbers, Jan ;
De Backer, Steve ;
Rajan, Jeny ;
Van Dyck, Dirk .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 31 (03) :680-689
[67]   Separation of Benign and Malignant Breast Lesions Using Dynamic Contrast Enhanced MRI in a Biopsy Cohort [J].
Kim, Sungheon Gene ;
Freed, Melanie ;
Leite, Ana Paula Klautau ;
Zhang, Jin ;
Seuss, Claudia ;
Moy, Linda .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 45 (05) :1385-1393
[68]   Background Parenchymal Enhancement at Breast MR Imaging and Breast Cancer Risk [J].
King, Valencia ;
Brooks, Jennifer D. ;
Bernstein, Jonine L. ;
Reiner, Anne S. ;
Pike, Malcolm C. ;
Morris, Elizabeth A. .
RADIOLOGY, 2011, 260 (01) :50-60
[69]   Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning [J].
Klauschen, F. ;
Mueller, K. -R. ;
Binder, A. ;
Bockmayr, M. ;
Haegele, M. ;
Seegerer, P. ;
Wienert, S. ;
Pruneri, G. ;
de Maria, S. ;
Badve, S. ;
Michiels, S. ;
Nielsen, T. O. ;
Adams, S. ;
Savas, P. ;
Symmans, F. ;
Willis, S. ;
Gruosso, T. ;
Park, M. ;
Haibe-Kains, B. ;
Gallas, B. ;
Thompson, A. M. ;
Cree, I. ;
Sotiriou, C. ;
Solinas, C. ;
Preusser, M. ;
Hewitt, S. M. ;
Rimm, D. ;
Viale, G. ;
Loi, S. ;
Loibl, S. ;
Salgado, R. ;
Denkert, C. .
SEMINARS IN CANCER BIOLOGY, 2018, 52 :151-157
[70]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90