Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size

被引:26
作者
Artalejo, J. R. [1 ]
Economou, A. [2 ]
Lopez-Herrero, M. J. [3 ]
机构
[1] Univ Complutense Madrid, Fac Math, Dept Stat & Operat Res, E-28040 Madrid, Spain
[2] Univ Athens, Dept Math, Athens 15784, Greece
[3] Univ Complutense Madrid, Sch Stat, E-28040 Madrid, Spain
关键词
Stochastic epidemic; Random environment; Quasi-stationarity; Extinction time; BASIC REPRODUCTION NUMBER; TIME; DYNAMICS; APPROXIMATION; DISTRIBUTIONS; SEASONALITY; DISEASES;
D O I
10.1007/s00285-012-0570-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate stochastic and epidemic models, when there is a random environment that influences the spread of the infectious disease. The inclusion of an external environment into the epidemic model is done by replacing the constant transmission rates with dynamic rates governed by an environmental Markov chain. We put emphasis on the algorithmic evaluation of the influence of the environmental factors on the performance behavior of the epidemic model.
引用
收藏
页码:799 / 831
页数:33
相关论文
共 34 条
[1]   Seasonality and the dynamics of infectious diseases [J].
Altizer, S ;
Dobson, A ;
Hosseini, P ;
Hudson, P ;
Pascual, M ;
Rohani, P .
ECOLOGY LETTERS, 2006, 9 (04) :467-484
[2]   Stochastic epidemics in dynamic populations: quasi-stationarity and extinction [J].
Andersson, H ;
Britton, T .
JOURNAL OF MATHEMATICAL BIOLOGY, 2000, 41 (06) :559-580
[3]   A stochastic SIS epidemic with demography: initial stages and time to extinction [J].
Andersson, Patrik ;
Lindenstrand, David .
JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 62 (03) :333-348
[4]   Stochastic epidemic models revisited: analysis of some continuous performance measures [J].
Artalejo, J. R. ;
Economou, A. ;
Lopez-Herrero, M. J. .
JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) :189-211
[5]   On the time to extinction from quasi-stationarity: A unified approach [J].
Artalejo, J. R. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (19) :4483-4486
[6]   Quasi-stationary and ratio of expectations distributions: A comparative study [J].
Artalejo, J. R. ;
Lopez-Herrero, M. J. .
JOURNAL OF THEORETICAL BIOLOGY, 2010, 266 (02) :264-274
[7]   Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic vector population [J].
Bacaer, Nicolas .
BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (03) :1067-1091
[8]   On the Final Size of Epidemics with Seasonality [J].
Bacaer, Nicolas ;
Gomes, M. Gabriela M. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2009, 71 (08) :1954-1966
[9]   TOTAL VARIATION APPROXIMATION FOR QUASI-STATIONARY DISTRIBUTIONS [J].
Barbour, A. D. ;
Pollett, P. K. .
JOURNAL OF APPLIED PROBABILITY, 2010, 47 (04) :934-946
[10]  
Bartlett M.S., 1960, Stochastic Population Models in Ecology and Epidemiology