From networks of unstable attractors to heteroclinic switching

被引:20
作者
Kirst, Christoph [1 ,2 ,3 ,4 ]
Timme, Marc [1 ,2 ]
机构
[1] Max Planck Inst Dynam & Self Org MPIDS, Network Dynam Grp, D-37073 Gottingen, Germany
[2] BCCN, D-37073 Gottingen, Germany
[3] Univ Gottingen, Fak Phys, D-3400 Gottingen, Germany
[4] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England
关键词
D O I
10.1103/PhysRevE.78.065201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a dynamical system that naturally exhibits two unstable attractors that are completely enclosed by each other's basin volume. This counterintuitive phenomenon occurs in networks of pulse-coupled oscillators with delayed interactions. We analytically show that upon continuously removing a local noninvertibility of the system, the two unstable attractors become a set of two nonattracting saddle states that are heteroclinically connected. This transition equally occurs from larger networks of unstable attractors to heteroclinic structures and constitutes a new type of singular bifurcation in dynamical systems.
引用
收藏
页数:4
相关论文
共 25 条
[1]   Extreme sensitivity to detuning for globally coupled phase oscillators [J].
Ashwin, P ;
Burylko, O ;
Maistrenko, Y ;
Popovych, O .
PHYSICAL REVIEW LETTERS, 2006, 96 (05)
[2]  
Ashwin P, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.026203
[3]   Unstable attractors: existence and robustness in networks of oscillators with delayed pulse coupling [J].
Ashwin, P ;
Timme, M .
NONLINEARITY, 2005, 18 (05) :2035-2060
[4]   Nonlinear dynamics - When instability makes sense [J].
Ashwin, P ;
Timme, M .
NATURE, 2005, 436 (7047) :36-37
[5]  
Brogliato B, 1999, NONSMOOTH MECH
[6]   Frequency locking and complex dynamics near a periodically forced robust heteroclinic cycle [J].
Dawes, J. H. P. ;
Tsai, T. L. .
PHYSICAL REVIEW E, 2006, 74 (05)
[7]   Instability, Subharmonics, and Chaos in Power Electronic Systems [J].
Deane, Jonathan H. B. ;
Hamill, David C. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 1990, 5 (03) :260-268
[8]  
DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4
[9]   Delay-induced multistable synchronization of biological oscillators [J].
Ernst, U ;
Pawelzik, K ;
Geisel, T .
PHYSICAL REVIEW E, 1998, 57 (02) :2150-2162
[10]   SYNCHRONIZATION INDUCED BY TEMPORAL DELAYS IN PULSE-COUPLED OSCILLATORS [J].
ERNST, U ;
PAWELZIK, K ;
GEISEL, T .
PHYSICAL REVIEW LETTERS, 1995, 74 (09) :1570-1573