Machine Learning and Deep Neural Networks Applications in Patient and Scan Preparation, Contrast Medium, and Radiation Dose Optimization

被引:23
作者
Eberhard, Matthias [1 ]
Alkadhi, Hatem [1 ]
机构
[1] Univ Zurich, Univ Hosp Zurich, Inst Diagnost & Intervent Radiol, Raemistr 100, CH-8091 Zurich, Switzerland
关键词
artificial intelligence; radiation dose; reconstruction algorithms; scan preparation; cardiothoracic imaging; GENERATIVE ADVERSARIAL NETWORKS; COMPUTED-TOMOGRAPHY; PROTOCOL SELECTION; ARTIFACT REDUCTION; MRI; PREDICTION; ENHANCEMENT;
D O I
10.1097/RTI.0000000000000482
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) algorithms are dependent on a high amount of robust data and the application of appropriate computational power and software. AI offers the potential for major changes in cardiothoracic imaging. Beyond image processing, machine learning and deep learning have the potential to support the image acquisition process. AI applications may improve patient care through superior image quality and have the potential to lower radiation dose with AI-driven reconstruction algorithms and may help avoid overscanning. This review summarizes recent promising applications of AI in patient and scan preparation as well as contrast medium and radiation dose optimization.
引用
收藏
页码:S17 / S20
页数:4
相关论文
共 28 条
[1]   Cardiovascular Event Prediction by Machine Learning The Multi-Ethnic Study of Atherosclerosis [J].
Ambale-Venkatesh, Bharath ;
Yang, Xiaoying ;
Wu, Colin O. ;
Liu, Kiang ;
Hundley, W. Gregory ;
McClelland, Robyn ;
Gomes, Antoinette S. ;
Folsom, Aaron R. ;
Shea, Steven ;
Guallar, Eliseo ;
Bluemke, David A. ;
Lima, Joao A. C. .
CIRCULATION RESEARCH, 2017, 121 (09) :1092-+
[2]   Intravenous Contrast Medium Administration and Scan Timing at CT: Considerations and Approaches [J].
Bae, Kyongtae T. .
RADIOLOGY, 2010, 256 (01) :32-61
[3]   Subacute and Chronic Left Ventricular Myocardial Scar: Accuracy of Texture Analysis on Nonenhanced Cine MR Images [J].
Baessler, Bettina ;
Mannil, Manoj ;
Oebel, Sabrina ;
Maintz, David ;
Alkadhi, Hatem ;
Manka, Robert .
RADIOLOGY, 2018, 286 (01) :103-112
[4]   Accuracy of automated patient positioning in CT using a 3D camera for body contour detection [J].
Booij, Ronald ;
Budde, Ricardo P. J. ;
Dijkshoorn, Marcel L. ;
van Straten, Marcel .
EUROPEAN RADIOLOGY, 2019, 29 (04) :2079-2088
[5]   Using machine learning for sequence-level automated MRI protocol selection in neuroradiology [J].
Brown, Andrew D. ;
Marotta, Thomas R. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2018, 25 (05) :568-571
[6]   A Natural Language Processing-based Model to Automate MRI Brain Protocol Selection and Prioritization [J].
Brown, Andrew D. ;
Marotta, Thomas R. .
ACADEMIC RADIOLOGY, 2017, 24 (02) :160-166
[7]   Convolutional neural network evaluation of over-scanning in lung computed tomography [J].
Colevray, M. ;
Tatard-Leitman, V. M. ;
Gouttard, S. ;
Douek, P. ;
Boussel, L. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2019, 100 (03) :177-183
[8]   Automated image quality evaluation of T2-weighted liver MRI utilizing deep learning architecture [J].
Esses, Steven J. ;
Lu, Xiaoguang ;
Zhao, Tiejun ;
Shanbhogue, Krishna ;
Dane, Bari ;
Bruno, Mary ;
Chandarana, Hersh .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 47 (03) :723-728
[9]   Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels [J].
Guggenberger, R. ;
Winklhofer, S. ;
Osterhoff, G. ;
Wanner, G. A. ;
Fortunati, M. ;
Andreisek, G. ;
Alkadhi, H. ;
Stolzmann, P. .
EUROPEAN RADIOLOGY, 2012, 22 (11) :2357-2364
[10]   Metal Artifact Reduction in Pelvic Computed Tomography With Hip Prostheses Comparison of Virtual Monoenergetic Extrapolations From Dual-Energy Computed Tomography and an Iterative Metal Artifact Reduction Algorithmin a Phantom Study [J].
Higashigaito, Kai ;
Angst, Florian ;
Runge, Val M. ;
Alkadhi, Hatem ;
Donati, Olivio F. .
INVESTIGATIVE RADIOLOGY, 2015, 50 (12) :828-834