Backpropagation through time for a general class of recurrent network

被引:13
作者
De Jesús, O [1 ]
Hagan, MT [1 ]
机构
[1] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA
来源
IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS | 2001年
关键词
D O I
10.1109/IJCNN.2001.938786
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a general class of dynamic network the Layered Digital Dynamic Network. It then derives the backpropagation-through-time algorithm for computing the gradient of the network error with respect to the weights of the network.
引用
收藏
页码:2638 / 2643
页数:6
相关论文
共 8 条
[1]  
De Jesus O, 2001, INT JOINT C NEUR NET
[2]  
DEMUTH HB, 2000, USERS GUIDE NEURAL N
[3]  
Hagan MT., 1996, NEURAL NETWORK DESIG
[4]  
Magnus J., 1999, Matrix Differential Calculus with Applications in Statistic and Econometrics
[5]  
Narendra K S, 1990, IEEE Trans Neural Netw, V1, P4, DOI 10.1109/72.80202
[6]   BACKPROPAGATION THROUGH TIME - WHAT IT DOES AND HOW TO DO IT [J].
WERBOS, PJ .
PROCEEDINGS OF THE IEEE, 1990, 78 (10) :1550-1560
[7]  
YANG W, 1994, THESIS OKLAHOMA STAT
[8]  
YANG W, 1993, P 7 OKL S ART INT ST, P226