Maternal H3K27me3-dependent autosomal and X chromosome imprinting

被引:54
作者
Chen, Zhiyuan [1 ,2 ,3 ]
Zhang, Yi [1 ,2 ,3 ,4 ,5 ]
机构
[1] Boston Childrens Hosp, Howard Hughes Med Inst, Boston, MA 02115 USA
[2] Boston Childrens Hosp, Program Cellular & Mol Med, Boston, MA 02115 USA
[3] Boston Childrens Hosp, Div Hematol Oncol, Dept Pediat, Boston, MA 02115 USA
[4] Harvard Med Sch, Dept Genet, Boston, MA 02115 USA
[5] Harvard Stem Cell Inst, Boston, MA 02115 USA
关键词
NOVO DNA METHYLATION; HISTONE METHYLTRANSFERASE ACTIVITY; SEQUENCING-BASED IDENTIFICATION; GROWTH-FACTOR; GENE-EXPRESSION; NONCODING RNA; MOUSE OOCYTE; CPG ISLANDS; TSIX RNA; POLYCOMB;
D O I
10.1038/s41576-020-0245-9
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The role of DNA methylation in genomic imprinting and X-chromosome inactivation (XCI) is well documented, but other imprinting mechanisms exist. Here, the authors review the role of oocyte-derived histone H3 lysine 27 trimethylation in establishing autosomal imprinting and imprinted XCI. Genomic imprinting and X-chromosome inactivation (XCI) are classic epigenetic phenomena that involve transcriptional silencing of one parental allele. Germline-derived differential DNA methylation is the best-studied epigenetic mark that initiates imprinting, but evidence indicates that other mechanisms exist. Recent studies have revealed that maternal trimethylation of H3 on lysine 27 (H3K27me3) mediates autosomal maternal allele-specific gene silencing and has an important role in imprinted XCI through repression of maternal Xist. Furthermore, loss of H3K27me3-mediated imprinting contributes to the developmental defects observed in cloned embryos. This novel maternal H3K27me3-mediated non-canonical imprinting mechanism further emphasizes the important role of parental chromatin in development and could provide the basis for improving the efficiency of embryo cloning.
引用
收藏
页码:555 / 571
页数:17
相关论文
共 174 条
[1]  
Akasaka T, 2001, DEVELOPMENT, V128, P1587
[2]   PCGF3/5-PRC1 initiates Polycomb recruitment in X chromosome inactivation [J].
Almeida, Mafalda ;
Pintacuda, Greta ;
Masui, Osamu ;
Koseki, Yoko ;
Gdula, Michal ;
Cerase, Andrea ;
Brown, David ;
Mould, Arne ;
Innocent, Cassandravictoria ;
Nakayama, Manabu ;
Schermelleh, Lothar ;
Nesterova, Tatyana B. ;
Koseki, Haruhiko ;
Brockdorff, Neil .
SCIENCE, 2017, 356 (6342) :1081-+
[3]   Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression [J].
Andergassen, Daniel ;
Dotter, Christoph P. ;
Wenzel, Daniel ;
Sigl, Verena ;
Bammer, Philipp C. ;
Muckenhuber, Markus ;
Mayer, Daniela ;
Kulinski, Tomasz M. ;
Theussl, Hans-Christian ;
Penninger, Josef M. ;
Bock, Christoph ;
Barlow, Denise P. ;
Pauler, Florian M. ;
Hudson, Quanah J. .
ELIFE, 2017, 6
[4]   The DNA methyltransferase DNMT3C protects male germ cells from transposon activity [J].
Barau, Joan ;
Teissandier, Aurelie ;
Zamudio, Natasha ;
Roy, Stephanie ;
Nalesso, Valerie ;
Herault, Yann ;
Guillou, Florian ;
Bourc'his, Deborah .
SCIENCE, 2016, 354 (6314) :909-912
[5]   Genomic Imprinting in Mammals [J].
Barlow, Denise P. ;
Bartolomei, Marisa S. .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2014, 6 (02)
[6]   THE MOUSE INSULIN-LIKE GROWTH-FACTOR TYPE-2 RECEPTOR IS IMPRINTED AND CLOSELY LINKED TO THE TME LOCUS [J].
BARLOW, DP ;
STOGER, R ;
HERRMANN, BG ;
SAITO, K ;
SCHWEIFER, N .
NATURE, 1991, 349 (6304) :84-87
[7]   Mammalian Genomic Imprinting [J].
Bartolomei, Marisa S. ;
Ferguson-Smith, Anne C. .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2011, 3 (07) :1-17
[8]   PARENTAL IMPRINTING OF THE MOUSE H19 GENE [J].
BARTOLOMEI, MS ;
ZEMEL, S ;
TILGHMAN, SM .
NATURE, 1991, 351 (6322) :153-155
[9]   EPIGENETIC MECHANISMS UNDERLYING THE IMPRINTING OF THE MOUSE H19-GENE [J].
BARTOLOMEI, MS ;
WEBBER, AL ;
BRUNKOW, ME ;
TILGHMAN, SM .
GENES & DEVELOPMENT, 1993, 7 (09) :1663-1673
[10]   Genomic imprinting in plants-revisiting existing models [J].
Batista, Rita A. ;
Kohler, Claudia .
GENES & DEVELOPMENT, 2020, 34 (1-2) :24-36