MULTIPLICITY OF SOLUTIONS FOR A DIRICHLET PROBLEM WITH A SINGULAR AND A SUPERCRITICAL NONLINEARITIES

被引:2
|
作者
Arcoya, David [1 ]
Boccardo, Lucio [2 ]
机构
[1] Univ Granada, Dept Anal Matemat, E-18071 Granada, Spain
[2] Univ Roma 1, Dipartimento Matemat, Rome, Italy
关键词
POSITIVE SOLUTIONS; ELLIPTIC PROBLEMS; EXISTENCE; SOBOLEV; CONCAVE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a bounded open set Omega subset of R-N and depending on lambda > 0 we study the multiplicity of solutions of {u > 0 in Omega, -div(M(x)del u) = lambda/u(gamma) + u(p) in Omega, u = 0 on partial derivative Omega where M(x) is a symmetric, bounded, and elliptic matrix and 0 < gamma < 1 < p < N+2/N-2.
引用
收藏
页码:119 / 128
页数:10
相关论文
共 50 条
  • [1] A Dirichlet problem with singular and supercritical nonlinearities
    Boccardo, Lucio
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (12) : 4436 - 4440
  • [2] Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity
    Arcoya, David
    Moreno-Merida, Lourdes
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 281 - 291
  • [3] Asymptotic behavior of positive solutions of a Dirichlet problem involving supercritical nonlinearities
    Anello, Giovanni
    Rao, Giuseppe
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2013, 54 (04): : 485 - 491
  • [4] The Dirichlet problem for singular elliptic equations with general nonlinearities
    Virginia De Cicco
    Daniela Giachetti
    Francescantonio Oliva
    Francesco Petitta
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [5] The Dirichlet problem for singular elliptic equations with general nonlinearities
    De Cicco, Virginia
    Giachetti, Daniela
    Oliva, Francescantonio
    Petitta, Francesco
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)
  • [6] Existence and Multiplicity of Positive Solutions for Singular Second Order Dirichlet Boundary Value Problem
    Azmi, Wan Ashraf Wan
    Mohamed, Mesliza
    INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013), 2013, 1557 : 66 - 71
  • [7] Existence of Solutions for the Dirichlet Problem with Superlinear Nonlinearities
    Andrzej Nowakowski
    Andrzej Rogowski
    Czechoslovak Mathematical Journal, 2003, 53 : 515 - 528
  • [8] Existence of solutions for the Dirichlet problem with superlinear nonlinearities
    Nowakowski, A
    Rogowski, A
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2003, 53 (03) : 515 - 528
  • [9] Multiplicity of solutions for the semilinear subelliptic Dirichlet problem
    Hua Chen
    Hong-Ge Chen
    Jin-Ning Li
    Xin Liao
    Science China(Mathematics), 2024, 67 (03) : 475 - 504
  • [10] Multiplicity of solutions for the semilinear subelliptic Dirichlet problem
    Chen, Hua
    Chen, Hong-Ge
    Li, Jin-Ning
    Liao, Xin
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (03) : 475 - 504