Brain and lesion segmentation in multiple sclerosis using fully convolutional neural networks: A large-scale study

被引:46
作者
Gabr, Refaat E. [1 ]
Coronado, Ivan [1 ]
Robinson, Melvin [2 ]
Sujit, Sheeba J. [1 ]
Datta, Sushmita [1 ]
Sun, Xiaojun [1 ]
Allen, William J. [3 ]
Lublin, Fred D. [4 ]
Wolinsky, Jerry S. [5 ]
Narayana, Ponnada A. [1 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston UTHlth, Dept Diagnost & Intervent Imaging, 6431 Fannin St,MSE R102D, Houston, TX 77030 USA
[2] Univ Texas Tyler, Dept Elect Engn, Tyler, TX 75799 USA
[3] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78712 USA
[4] Mt Sinai Med Ctr, New York, NY 10029 USA
[5] Univ Texas Hlth Sci Ctr Houston UTHlth, Dept Neurol, Houston, TX USA
基金
美国国家卫生研究院;
关键词
Deep learning; tissue classification; white matter lesions; artificial intelligence; WHITE-MATTER HYPERINTENSITIES; MRI;
D O I
10.1177/1352458519856843
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective: To investigate the performance of deep learning (DL) based on fully convolutional neural network (FCNN) in segmenting brain tissues in a large cohort of multiple sclerosis (MS) patients. Methods: We developed a FCNN model to segment brain tissues, including T2-hyperintense MS lesions. The training, validation, and testing of FCNN were based on ~1000 magnetic resonance imaging (MRI) datasets acquired on relapsing-remitting MS patients, as a part of a phase 3 randomized clinical trial. Multimodal MRI data (dual-echo, FLAIR, and T1-weighted images) served as input to the network. Expert validated segmentation was used as the target for training the FCNN. We cross-validated our results using the leave-one-center-out approach. Results: We observed a high average (95% confidence limits) Dice similarity coefficient for all the segmented tissues: 0.95 (0.92-0.98) for white matter, 0.96 (0.93-0.98) for gray matter, 0.99 (0.98-0.99) for cerebrospinal fluid, and 0.82 (0.63-1.0) for T2 lesions. High correlations between the DL segmented tissue volumes and ground truth were observed (R-2 > 0.92 for all tissues). The cross validation showed consistent results across the centers for all tissues. Conclusion: The results from this large-scale study suggest that deep FCNN can automatically segment MS brain tissues, including lesions, with high accuracy.
引用
收藏
页码:1217 / 1226
页数:10
相关论文
共 29 条
[1]  
Abadi Martin, 2016, arXiv
[2]   Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation [J].
Brosch, Tom ;
Tang, Lisa Y. W. ;
Yoo, Youngjin ;
Li, David K. B. ;
Traboulsee, Anthony ;
Tam, Roger .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1229-1239
[3]   Longitudinal multiple sclerosis lesion segmentation: Resource and challenge [J].
Carass, Aaron ;
Roy, Snehashis ;
Jog, Amod ;
Cuzzocreo, Jennifer L. ;
Magrath, Elizabeth ;
Gherman, Adrian ;
Button, Julia ;
Nguyen, James ;
Prados, Ferran ;
Sudre, Carole H. ;
Cardoso, Manuel Jorge ;
Cawley, Niamh ;
Ciccarelli, Olga ;
Wheeler-Kingshott, Claudia A. M. ;
Ourselin, Sebastien ;
Catanese, Laurence ;
Deshpande, Hrishikesh ;
Maurel, Pierre ;
Commowick, Olivier ;
Barillot, Christian ;
Tomas-Fernandez, Xavier ;
Warfield, Simon K. ;
Vaidya, Suthirth ;
Chunduru, Abhijith ;
Muthuganapathy, Ramanathan ;
Krishnamurthi, Ganapathy ;
Jesson, Andrew ;
Arbel, Tal ;
Maier, Oskar ;
Handeles, Heinz ;
Iheme, Leonardo O. ;
Unay, Devrim ;
Jain, Saurabh ;
Sima, Diana M. ;
Smeets, Dirk ;
Ghafoorian, Mohsen ;
Platel, Bram ;
Birenbaum, Ariel ;
Greenspan, Hayit ;
Bazin, Pierre-Louis ;
Calabresi, Peter A. ;
Crainiceanu, Ciprian M. ;
Ellingsen, Lotta M. ;
Reich, Daniel S. ;
Prince, Jerry L. ;
Pham, Dzung L. .
NEUROIMAGE, 2017, 148 :77-102
[4]   Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging [J].
Danelakis, Antonios ;
Theoharis, Theoharis ;
Verganelakis, Dimitrios A. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 70 :83-100
[5]   Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study [J].
de Sitter, Alexandra ;
Steenwijk, Martijn D. ;
Ruet, Aurelie ;
Versteeg, Adriaan ;
Liu, Yaou ;
van Schijndel, Ronald A. ;
Pouwels, Petra J. W. ;
Kilsdonk, Iris D. ;
Cover, Keith S. ;
van Dijk, Bob W. ;
Ropele, Stefan ;
Rocca, Maria A. ;
Yiannakas, Marios ;
Wattjes, Mike P. ;
Damangir, Soheil ;
Frisoni, Giovanni B. ;
Sastre-Garriga, Jaume ;
Rovira, Alex ;
Enzinger, Christian ;
Filippi, Massimo ;
Frederiksen, Jette ;
Ciccarelli, Olga ;
Kappos, Ludwig ;
Barkhof, Frederik ;
Vrenken, Hugo .
NEUROIMAGE, 2017, 163 :106-114
[6]   MRI FLAIR lesion segmentation in multiple sclerosis: Does automated segmentation hold up with manual annotation? [J].
Egger, Christine ;
Opfer, Roland ;
Wang, Chenyu ;
Kepp, Timo ;
Sormani, Maria Pia ;
Spies, Lothar ;
Barnett, Michael ;
Schippling, Sven .
NEUROIMAGE-CLINICAL, 2017, 13 :264-270
[7]   NONLINEAR ANISOTROPIC FILTERING OF MRI DATA [J].
GERIG, G ;
KUBLER, O ;
KIKINIS, R ;
JOLESZ, FA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1992, 11 (02) :221-232
[8]   An Advanced MRI Multi-Modalities Segmentation Methodology Dedicated to Multiple Sclerosis Lesions Exploration and Differentiation [J].
Ghribi, Olfa ;
Sellami, Lamia ;
Ben Slima, Mohamed ;
Ben Hamida, Ahmed ;
Mhiri, Chokri ;
Ben Mahfoudh, Keireddine .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2017, 16 (08) :656-665
[9]  
Glorot X., 2010, P 13 INT C ART INT S, P249, DOI DOI 10.1109/LGRS.2016.2565705
[10]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1