ON THE DIOPHANTINE EQUATION x2-kxy+y2+2n=0

被引:5
作者
Keskin, Refik [1 ]
Karaatli, Olcay [1 ]
Siar, Zafer [1 ]
机构
[1] Sakarya Univ, Fac Arts & Sci, TR-54187 Sakarya, Turkey
关键词
Diophantine equations; Pell equations; generalized Fibonacci and Lucas numbers;
D O I
10.18514/MMN.2012.433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we determine when the equation in the title has an infinite number of positive integer solutions x and y when 0 <= n <= 10. Moreover, we give all the positive integer solutions of the same equation for 0 <= n <= 10.
引用
收藏
页码:375 / 388
页数:14
相关论文
共 50 条
[41]   ON THE EQUATION y2 = x6 + k [J].
Nguyen Xuan Tho .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (06) :2167-2178
[42]   Squares in Lehmer sequences and the Diophantine equation Ax4-By2=2 [J].
Yuan, Pingzhi ;
Li, Yuan .
ACTA ARITHMETICA, 2009, 139 (03) :275-302
[43]   On the diophantine equation x(x-1)...(x-(m-1))=λy(y-1)...(y-(n-1))+l [J].
Rakaczki, C .
ACTA ARITHMETICA, 2003, 110 (04) :339-360
[44]   THE DIOPHANTINE EQUATIONS 2(n) +/- 3.2(m) [J].
Gueth, K. ;
Szalay, L. .
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2018, 87 (02) :199-204
[45]   A NOTE ON THE DIOPHANTINE EQUATION (na)x + (nb)y = (nc)z [J].
Deng, Mou Jie .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (02) :316-321
[46]   ON THE RAMANUJAN-NAGELL TYPE DIOPHANTINE EQUATION x2 + Akn = B, II [J].
Zhang, Zhongfeng ;
Togbe, Alain .
GLASNIK MATEMATICKI, 2018, 53 (02) :221-228
[47]   Positive integer solutions of the diophantine equation x2-Lnxy +(-1)ny2 = ±5r [J].
Keskin, Refik ;
Siar, Zafer .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (03) :301-313
[48]   Positive integer solutions of the diophantine equation x2 − Lnxy + (−1)ny2 = ±5r [J].
REFİK KESKİN ;
ZAFER ŞİAR .
Proceedings - Mathematical Sciences, 2014, 124 :301-313
[49]   Diophantine equations x2-Dy2 = -1, ±2, odd graphs, and their applications [J].
Ji, CG .
JOURNAL OF NUMBER THEORY, 2005, 114 (01) :18-36
[50]   Characterization of Diophantine Equations a plus y2 = z2, Pythagorean n-Tuples, and Algebraic Structures [J].
Amato, Roberto .
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2025, 2025 (01)