ON THE DIOPHANTINE EQUATION x2-kxy+y2+2n=0

被引:3
作者
Keskin, Refik [1 ]
Karaatli, Olcay [1 ]
Siar, Zafer [1 ]
机构
[1] Sakarya Univ, Fac Arts & Sci, TR-54187 Sakarya, Turkey
关键词
Diophantine equations; Pell equations; generalized Fibonacci and Lucas numbers;
D O I
10.18514/MMN.2012.433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we determine when the equation in the title has an infinite number of positive integer solutions x and y when 0 <= n <= 10. Moreover, we give all the positive integer solutions of the same equation for 0 <= n <= 10.
引用
收藏
页码:375 / 388
页数:14
相关论文
共 50 条
  • [21] The diophantine equation b2X4-dY2=1
    Bennett, MA
    Walsh, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (12) : 3481 - 3491
  • [22] On the diophantine equation x2+q2k+1=yn
    Arif, SA
    Abu Muriefah, FS
    JOURNAL OF NUMBER THEORY, 2002, 95 (01) : 95 - 100
  • [23] SOLUTIONS OF THE PELL EQUATION x2 - (a2+2a) y2 = N VIA GENERALIZED FIBONACCI AND LUCAS NUMBERS
    Peker, Bilge
    Senay, Hasan
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (04) : 721 - 726
  • [24] Frobenius Numbers Associated with Diophantine Triples of x2-y2=z®
    Yin, Ruze
    Komatsu, Takao
    SYMMETRY-BASEL, 2024, 16 (07):
  • [25] Rational solutions of the Diophantine equations f (x)2 ± f (y)2 = z2
    Youmbai, Ahmed El Amine
    Behloul, Djilali
    PERIODICA MATHEMATICA HUNGARICA, 2019, 79 (02) : 255 - 260
  • [26] On the Diophantine equation F(x) = G(y)
    Tengely, S
    ACTA ARITHMETICA, 2003, 110 (02) : 185 - 200
  • [27] The Diophantine equation f(x)=g(y)
    Bilu, YF
    Tichy, RF
    ACTA ARITHMETICA, 2000, 95 (03) : 261 - 288
  • [28] ON THE DIOPHANTINE INEQUALITY |X2 - cXY2 + Y4| ≤ c+2
    He, Bo
    Pink, Istvan
    Pinter, Akos
    Togbe, Alain
    GLASNIK MATEMATICKI, 2013, 48 (02) : 291 - 299
  • [29] On the Diophantine equation x2+3a41b = yn
    Alan, Murat
    Zengin, Ugur
    PERIODICA MATHEMATICA HUNGARICA, 2020, 81 (02) : 284 - 291
  • [30] On the Brocard–Ramanujan Diophantine Equation n! + 1 = m2
    Bruce C. Berndt
    William F. Galway
    The Ramanujan Journal, 2000, 4 : 41 - 42