A convexity property and a new characterization of Euler's gamma function

被引:2
作者
Alzer, Horst [1 ]
Matkowski, Janusz [1 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, PL-65516 Zielona Gora, Poland
关键词
Gamma function; Convex; Concave; Inequalities; Functional equation; Characterization;
D O I
10.1007/s00013-013-0487-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our main results are: (I) Let alpha not equal 0 be a real number. The function (Gamma circle exp)(alpha) is convex on R if and only if alpha >= max(0<t<x0) (-1/t psi(t) - psi'(t)/psi(t)(2)) = 0.0258 .... Here, x(0) = 1.4616 ... denotes the only positive zero of psi = Gamma'/Gamma. (II) Assume that a function f : (0, infinity) -> (0, infinity) is bounded from above on a set of positive Lebesgue measure (or on a set of the second category with the Baire property) and satisfies f(x + 1) = xf(x) for x > 0 and f(1) = 1. If there are a number b and a sequence of positive real numbers (a(n)) (n is an element of N) with lim(n ->infinity) a(n) = 0 such that for every n the function (f circle exp)(an) is Jensen convex on (b, infinity), then f is the gamma function.
引用
收藏
页码:131 / 137
页数:7
相关论文
共 23 条
[1]  
[Anonymous], AEQUATIONES MATH
[2]  
[Anonymous], 1978, Aequationes Math.
[3]  
[Anonymous], AEQUAT MATH
[4]  
[Anonymous], AEQU MATH
[5]  
[Anonymous], 1948, Handbook of Mathematical Functions withFormulas, Graphs, and Mathematical Tables, DOI DOI 10.1119/1.15378
[6]  
[Anonymous], 1987, STOCHASTICA
[7]  
Artin E, 1931, Einfuhrung in die Theorie der Gammafunktion
[8]  
BOHR H, 1922, LAEREBOG MATEMATISK, V3
[9]  
Davis P.J., 2016, American Mathematical Monthly, V66, P849, DOI DOI 10.2307/2309786
[10]   A Sharpening of Wielandt's Characterization of the Gamma Function [J].
Fuglede, Bent .
AMERICAN MATHEMATICAL MONTHLY, 2008, 115 (09) :845-850