Multistage gearbox condition monitoring using motor current signature analysis and Kolmogorov-Smirnov test

被引:36
|
作者
Kar, C [1 ]
Mohanty, AR [1 ]
机构
[1] Indian Inst Technol, Dept Mech Engn, Kharagpur 721302, W Bengal, India
关键词
D O I
10.1016/j.jsv.2005.04.020
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Even though there are a number of condition monitoring and analysis techniques, researchers are in search of a simple and easy way to monitor vibration of a gearbox, which is an omnipresent and an important power transmission component in any machinery. Motor current signature analysis (MCSA) has been the most recent addition as a non-intrusive and easy to measure condition monitoring technique. The objective of this paper is to detect artificially introduced defects in gears of a multistage automotive transmission gearbox at different gear operations using MCSA as a condition monitoring technique and Kolmogorov-Smirnov (KS) test as an analysis technique assuming that any defect or load has a specific probability distribution. Empirical cumulative distribution functions (ECDF) are used to differentiate these probability distributions. Steady as well as fluctuating load conditions on the gearbox are tested for both vibration and current signatures during different gear operations. It is concluded that combined MCSA and KS test can be an effective way to monitor and detect faults in gears. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:337 / 368
页数:32
相关论文
共 50 条
  • [21] Analysis of the seasonal variation of schizophrenic births using a Kolmogorov-Smirnov type statistic
    Verdoux, H
    Takei, N
    deSaintMathurin, RC
    Bourgeois, M
    EUROPEAN PSYCHIATRY, 1997, 12 (03) : 111 - 116
  • [22] Condition Monitoring of Subsea Electrical Equipment Using Motor Current Signature Analysis
    Sivertsen, L.
    Hjertaker, B. T.
    Kjenner, T. E.
    Stjernberg, S.
    EPE JOURNAL, 2012, 22 (01) : 28 - 36
  • [23] A new approach to time-domain vibration condition monitoring: Gear tooth fatigue crack detection and identification by the Kolmogorov-Smirnov test
    Andrade, FA
    Esat, I
    Badi, MNM
    JOURNAL OF SOUND AND VIBRATION, 2001, 240 (05) : 909 - 919
  • [24] Robust RNA-seq data analysis using an integrated method of ROC curve and Kolmogorov-Smirnov test
    Yang, Shengping
    Zhang, Kun
    Fang, Zhide
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (12) : 7444 - 7457
  • [25] Normalizing variables with too-frequent values using a Kolmogorov-Smirnov test: A practical approach
    Drezner, Zvi
    Turel, Ofir
    COMPUTERS & INDUSTRIAL ENGINEERING, 2011, 61 (04) : 1240 - 1244
  • [26] Conditional monitoring and fault detection of wind turbines based on Kolmogorov-Smirnov non-parametric test
    Ohunakin, Olayinka S.
    Henry, Emerald U.
    Matthew, Olaniran J.
    Ezekiel, Victor U.
    Adelekan, Damola S.
    Oyeniran, Ayodele T.
    ENERGY REPORTS, 2024, 11 : 2577 - 2591
  • [28] Kolmogorov-Smirnov like test for time-frequency Fourier spectrogram analysis in LISA Pathfinder
    Ferraioli, Luigi
    Armano, Michele
    Audley, Heather
    Congedo, Giuseppe
    Diepholz, Ingo
    Gibert, Ferran
    Hewitson, Martin
    Hueller, Mauro
    Karnesis, Nikolaos
    Korsakova, Natalia
    Nofrarias, Miquel
    Plagnol, Eric
    Vitale, Stefano
    EXPERIMENTAL ASTRONOMY, 2015, 39 (01) : 1 - 10
  • [29] Autoregressive model-based gear shaft fault diagnosis using the Kolmogorov-Smirnov test
    Wang, Xiyang
    Makis, Viliam
    JOURNAL OF SOUND AND VIBRATION, 2009, 327 (3-5) : 413 - 423
  • [30] Kolmogorov-Smirnov like test for time-frequency Fourier spectrogram analysis in LISA Pathfinder
    Luigi Ferraioli
    Michele Armano
    Heather Audley
    Giuseppe Congedo
    Ingo Diepholz
    Ferran Gibert
    Martin Hewitson
    Mauro Hueller
    Nikolaos Karnesis
    Natalia Korsakova
    Miquel Nofrarias
    Eric Plagnol
    Stefano Vitale
    Experimental Astronomy, 2015, 39 : 1 - 10