Bayesian analysis of quantile regression for censored dynamic panel data

被引:34
作者
Kobayashi, Genya [1 ]
Kozumi, Hideo [1 ]
机构
[1] Kobe Univ, Grad Sch Business Adm, Kobe, Hyogo 6578501, Japan
关键词
Asymmetric Laplace distribution; Bayesian quantile regression; Censored dynamic panel; Gibbs sampler; Marginal likelihood; Monte Carlo EM algorithm; MAXIMUM-LIKELIHOOD-ESTIMATION; DATA MODELS; EFFICIENT ESTIMATION; DEPENDENT-VARIABLES; INITIAL CONDITIONS; INFERENCE; ERROR; ALGORITHM; MIXTURE; DEMAND;
D O I
10.1007/s00180-011-0263-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a Bayesian approach to analyzing quantile regression models for censored dynamic panel data. We employ a likelihood-based approach using the asymmetric Laplace error distribution and introduce lagged observed responses into the conditional quantile function. We also deal with the initial conditions problem in dynamic panel data models by introducing correlated random effects into the model. For posterior inference, we propose a Gibbs sampling algorithm based on a location-scale mixture representation of the asymmetric Laplace distribution. It is shown that the mixture representation provides fully tractable conditional posterior densities and considerably simplifies existing estimation procedures for quantile regression models. In addition, we explain how the proposed Gibbs sampler can be utilized for the calculation of marginal likelihood and the modal estimation. Our approach is illustrated with real data on medical expenditures.
引用
收藏
页码:359 / 380
页数:22
相关论文
共 50 条
  • [41] Moment estimation for censored quantile regression
    Wang, Qian
    Chen, Songnian
    ECONOMETRIC REVIEWS, 2021, 40 (09) : 815 - 829
  • [42] Modeling Censored Mobility Demand Through Censored Quantile Regression Neural Networks
    Huttel, Frederik Boe
    Peled, Inon
    Rodrigues, Filipe
    Pereira, Francisco C.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 21753 - 21765
  • [43] Variational Bayesian Tensor Quantile Regression
    Jin, Yunzhi
    Zhang, Yanqing
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2025, 41 (02) : 733 - 756
  • [44] Flexible Bayesian quantile regression for independent and clustered data
    Reich, Brian J.
    Bondell, Howard D.
    Wang, Huixia J.
    BIOSTATISTICS, 2010, 11 (02) : 337 - 352
  • [45] Bayesian lasso binary quantile regression
    Benoit, Dries F.
    Alhamzawi, Rahim
    Yu, Keming
    COMPUTATIONAL STATISTICS, 2013, 28 (06) : 2861 - 2873
  • [46] Bayesian Endogenous Tobit Quantile Regression
    Kobayashi, Genya
    BAYESIAN ANALYSIS, 2017, 12 (01): : 161 - 191
  • [47] A BAYESIAN APPROACH TO ENVELOPE QUANTILE REGRESSION
    Lee, Minji
    Chakraborty, Saptarshi
    Su, Zhihua
    STATISTICA SINICA, 2022, 32 : 2339 - 2357
  • [48] bayesQR: A Bayesian Approach to Quantile Regression
    Benoit, Dries F. .
    van den Poel, Dirk
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (07): : 1 - 32
  • [49] Reexamining Determinants of FDI Using Dynamic Panel Quantile Regression Analysis: Evidence of Korea
    Kim, Sang Hyuck
    Yang, Jae Hoon
    JOURNAL OF KOREA TRADE, 2014, 18 (04) : 29 - 46
  • [50] Instrumental Variable Quantile Regression of Spatial Dynamic Durbin Panel Data Model with Fixed Effects
    Chen, Danqing
    Chen, Jianbao
    Li, Shuangshuang
    MATHEMATICS, 2021, 9 (24)