Bayesian analysis of quantile regression for censored dynamic panel data

被引:33
|
作者
Kobayashi, Genya [1 ]
Kozumi, Hideo [1 ]
机构
[1] Kobe Univ, Grad Sch Business Adm, Kobe, Hyogo 6578501, Japan
关键词
Asymmetric Laplace distribution; Bayesian quantile regression; Censored dynamic panel; Gibbs sampler; Marginal likelihood; Monte Carlo EM algorithm; MAXIMUM-LIKELIHOOD-ESTIMATION; DATA MODELS; EFFICIENT ESTIMATION; DEPENDENT-VARIABLES; INITIAL CONDITIONS; INFERENCE; ERROR; ALGORITHM; MIXTURE; DEMAND;
D O I
10.1007/s00180-011-0263-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a Bayesian approach to analyzing quantile regression models for censored dynamic panel data. We employ a likelihood-based approach using the asymmetric Laplace error distribution and introduce lagged observed responses into the conditional quantile function. We also deal with the initial conditions problem in dynamic panel data models by introducing correlated random effects into the model. For posterior inference, we propose a Gibbs sampling algorithm based on a location-scale mixture representation of the asymmetric Laplace distribution. It is shown that the mixture representation provides fully tractable conditional posterior densities and considerably simplifies existing estimation procedures for quantile regression models. In addition, we explain how the proposed Gibbs sampler can be utilized for the calculation of marginal likelihood and the modal estimation. Our approach is illustrated with real data on medical expenditures.
引用
收藏
页码:359 / 380
页数:22
相关论文
共 50 条
  • [41] Quantile Regression for Dynamic Panel Data Using Hausman–Taylor Instrumental Variables
    Li Tao
    Yuanjie Zhang
    Maozai Tian
    Computational Economics, 2019, 53 : 1033 - 1069
  • [42] Research on Quantile Regression Method for Longitudinal Interval-Censored Data Based on Bayesian Double Penalty
    Zhao, Ke
    Shu, Ting
    Hu, Chaozhu
    Luo, Youxi
    MATHEMATICS, 2024, 12 (12)
  • [43] Distributed Censored Quantile Regression
    Sit, Tony
    Xing, Yue
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1685 - 1697
  • [44] Bayesian Analysis of Composite Quantile Regression
    Alhamzawi R.
    Statistics in Biosciences, 2016, 8 (2) : 358 - 373
  • [45] Censored quantile regression redux
    Koenker, Roger
    JOURNAL OF STATISTICAL SOFTWARE, 2008, 27 (06): : 1 - 25
  • [46] Envelopes for censored quantile regression
    Zhao, Yue
    Van Keilegom, Ingrid
    Ding, Shanshan
    SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (04) : 1562 - 1585
  • [47] Functional Censored Quantile Regression
    Jiang, Fei
    Cheng, Qing
    Yin, Guosheng
    Shen, Haipeng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 931 - 944
  • [48] QUANTILE CALCULUS AND CENSORED REGRESSION
    Huang, Yijian
    ANNALS OF STATISTICS, 2010, 38 (03): : 1607 - 1637
  • [49] Bootstrap Inference for Panel Data Quantile Regression
    Galvao, Antonio F.
    Parker, Thomas
    Xiao, Zhijie
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 628 - 639
  • [50] Weighted censored quantile regression
    Vasudevan, Chithran
    Variyath, Asokan Mulayath
    Fan, Zhaozhi
    SURVEY METHODOLOGY, 2019, 45 (01) : 127 - 144