Asymmetric Laplace distribution;
Bayesian quantile regression;
Censored dynamic panel;
Gibbs sampler;
Marginal likelihood;
Monte Carlo EM algorithm;
MAXIMUM-LIKELIHOOD-ESTIMATION;
DATA MODELS;
EFFICIENT ESTIMATION;
DEPENDENT-VARIABLES;
INITIAL CONDITIONS;
INFERENCE;
ERROR;
ALGORITHM;
MIXTURE;
DEMAND;
D O I:
10.1007/s00180-011-0263-3
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This paper develops a Bayesian approach to analyzing quantile regression models for censored dynamic panel data. We employ a likelihood-based approach using the asymmetric Laplace error distribution and introduce lagged observed responses into the conditional quantile function. We also deal with the initial conditions problem in dynamic panel data models by introducing correlated random effects into the model. For posterior inference, we propose a Gibbs sampling algorithm based on a location-scale mixture representation of the asymmetric Laplace distribution. It is shown that the mixture representation provides fully tractable conditional posterior densities and considerably simplifies existing estimation procedures for quantile regression models. In addition, we explain how the proposed Gibbs sampler can be utilized for the calculation of marginal likelihood and the modal estimation. Our approach is illustrated with real data on medical expenditures.
机构:
Natl Res Univ Higher Sch Econ, Int Lab Macroecon Anal, Shabolovka St 26, Moscow 119049, RussiaNatl Res Univ Higher Sch Econ, Int Lab Macroecon Anal, Shabolovka St 26, Moscow 119049, Russia
Besstremyannaya, Galina
Golovan, Sergei
论文数: 0引用数: 0
h-index: 0
机构:
New Econ Sch, Skolkovskoe Shosse 45, Moscow 121353, RussiaNatl Res Univ Higher Sch Econ, Int Lab Macroecon Anal, Shabolovka St 26, Moscow 119049, Russia
机构:
Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
Tang, Yuanyuan
Wang, Xiaorui
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
Wang, Xiaorui
Zhu, Jianming
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
Zhu, Jianming
Lin, Hongmei
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
Lin, Hongmei
Tang, Yanlin
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Stat, MOE, KLATASDS, Shanghai 200062, Peoples R China
Hong Kong Baptist Univ, Dept Math, Hong Kong 519087, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
Tang, Yanlin
Tong, Tiejun
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Stat, MOE, KLATASDS, Shanghai 200062, Peoples R China
Hong Kong Baptist Univ, Dept Math, Hong Kong 519087, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China