Bayesian analysis of quantile regression for censored dynamic panel data

被引:34
作者
Kobayashi, Genya [1 ]
Kozumi, Hideo [1 ]
机构
[1] Kobe Univ, Grad Sch Business Adm, Kobe, Hyogo 6578501, Japan
关键词
Asymmetric Laplace distribution; Bayesian quantile regression; Censored dynamic panel; Gibbs sampler; Marginal likelihood; Monte Carlo EM algorithm; MAXIMUM-LIKELIHOOD-ESTIMATION; DATA MODELS; EFFICIENT ESTIMATION; DEPENDENT-VARIABLES; INITIAL CONDITIONS; INFERENCE; ERROR; ALGORITHM; MIXTURE; DEMAND;
D O I
10.1007/s00180-011-0263-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a Bayesian approach to analyzing quantile regression models for censored dynamic panel data. We employ a likelihood-based approach using the asymmetric Laplace error distribution and introduce lagged observed responses into the conditional quantile function. We also deal with the initial conditions problem in dynamic panel data models by introducing correlated random effects into the model. For posterior inference, we propose a Gibbs sampling algorithm based on a location-scale mixture representation of the asymmetric Laplace distribution. It is shown that the mixture representation provides fully tractable conditional posterior densities and considerably simplifies existing estimation procedures for quantile regression models. In addition, we explain how the proposed Gibbs sampler can be utilized for the calculation of marginal likelihood and the modal estimation. Our approach is illustrated with real data on medical expenditures.
引用
收藏
页码:359 / 380
页数:22
相关论文
共 50 条
  • [21] Envelopes for censored quantile regression
    Zhao, Yue
    Van Keilegom, Ingrid
    Ding, Shanshan
    SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (04) : 1562 - 1585
  • [22] Penalized quantile regression for spatial panel data with fixed effects
    Zhang, Yuanqing
    Jiang, Jiayuan
    Feng, Yaqin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (04) : 1287 - 1299
  • [23] A Bayesian quantile regression model for insurance company costs data
    Sriram, Karthik
    Shi, Peng
    Ghosh, Pulak
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2016, 179 (01) : 177 - 202
  • [24] Shrinkage quantile regression for panel data with multiple structural breaks
    Zhang, Liwen
    Zhu, Zhoufan
    Feng, Xingdong
    He, Yong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (03): : 820 - 851
  • [25] Bayesian quantile regression for longitudinal count data
    Jantre, Sanket
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (01) : 103 - 127
  • [26] Bayesian quantile regression for ordinal longitudinal data
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (05) : 815 - 828
  • [27] Multiple Imputation for Cure Rate Quantile Regression with Censored Data
    Wu, Yuanshan
    Yin, Guosheng
    BIOMETRICS, 2017, 73 (01) : 94 - 103
  • [28] A skew-t quantile regression for censored and missing data
    Galarza Morales, Christian E.
    Lachos, Victor H.
    Bourguignon, Marcelo
    STAT, 2021, 10 (01):
  • [29] Regression Adjustment for Noncrossing Bayesian Quantile Regression
    Rodrigues, T.
    Fan, Y.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (02) : 275 - 284
  • [30] Assessing quantile prediction with censored quantile regression models
    Li, Ruosha
    Peng, Limin
    BIOMETRICS, 2017, 73 (02) : 517 - 528