A tt*-bundle associated with a harmonic map from a Riemann surface into a sphere

被引:2
|
作者
Kurosu, Sanae [1 ]
Moriya, Katsuhiro [2 ]
机构
[1] Tokyo Univ Sci, Dept Math, Fac Sci Div 1, Shinjuku Ku, Tokyo 1628601, Japan
[2] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan
关键词
tt*-Bundle; Harmonic map; The Clifford algebra; TOPOLOGICAL-ANTITOPOLOGICAL FUSION; CONSTANT MEAN-CURVATURE; PLURIHARMONIC MAPS; GEOMETRY;
D O I
10.1016/j.difgeo.2012.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A tt*-bundle is constructed by a harmonic map from a Riemann surface into an n-dimensional sphere. This tt*-bundle is a high-dimensional analogue of a quaternionic line bundle with a Willmore connection. For the construction, a flat connection is decomposed into four parts by a fiberwise complex structure. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:227 / 232
页数:6
相关论文
共 13 条
  • [1] THE QUALITATIVE BEHAVIOR FOR α-HARMONIC MAPS FROM A SURFACE WITH BOUNDARY INTO A SPHERE
    LI, Jiayu
    Zhu, Chaona
    Zhu, Miaomiao
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (01) : 391 - 417
  • [2] Harmonic maps from super Riemann surfaces
    Ostermayr, Dominik
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 124 : 371 - 412
  • [3] On the nonexistence of finite time bubble trees in symmetric harmonic map heat flows from the disk to the 2-sphere
    van der Hout, R
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 192 (01) : 188 - 201
  • [4] Harmonic maps from Riemann surfaces into complex Finsler manifolds
    Nishikawa, Seiki
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (06)
  • [5] Harmonic Maps with Free Boundary from Degenerating Bordered Riemann Surfaces
    Lei Liu
    Chong Song
    Miaomiao Zhu
    The Journal of Geometric Analysis, 2022, 32
  • [6] Harmonic Maps with Free Boundary from Degenerating Bordered Riemann Surfaces
    Liu, Lei
    Song, Chong
    Zhu, Miaomiao
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)
  • [7] Exponentially subelliptic harmonic maps from the Heisenberg group into a sphere
    Chiang, Yuan-Jen
    Dragomir, Sorin
    Esposito, Francesco
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)
  • [8] Surfaces in a pseudo-sphere with harmonic or 1-type pseudo-spherical Gauss map
    Bektas, Burcu
    Van der Veken, Joeri
    Vrancken, Luc
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2017, 52 (01) : 45 - 55
  • [9] Surfaces in a pseudo-sphere with harmonic or 1-type pseudo-spherical Gauss map
    Burcu Bektaş
    Joeri Van der Veken
    Luc Vrancken
    Annals of Global Analysis and Geometry, 2017, 52 : 45 - 55
  • [10] The Refined Analysis on the Convergence Behavior of Harmonic Map Sequence from Cylinders
    Li Chen
    Yuxiang Li
    Youde Wang
    Journal of Geometric Analysis, 2012, 22 : 942 - 963