Precipitation Extremes Under Climate Change

被引:586
作者
O'Gorman, Paul A. [1 ]
机构
[1] MIT, Dept Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Extremes; Global warming; Rainfall; Snowfall; Convection; Orographic precipitation; Climate models; TROPICAL PRECIPITATION; CONVECTIVE PRECIPITATION; INTENSE PRECIPITATION; FUTURE CHANGES; UNITED-STATES; TEMPERATURE; EVENTS; TRENDS; RAIN; RESOLUTION;
D O I
10.1007/s40641-015-0009-3
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to better constrain the sensitivity of tropical precipitation extremes to warming.
引用
收藏
页码:49 / 59
页数:11
相关论文
共 98 条
[1]   Global observed changes in daily climate extremes of temperature and precipitation [J].
Alexander, LV ;
Zhang, X ;
Peterson, TC ;
Caesar, J ;
Gleason, B ;
Tank, AMGK ;
Haylock, M ;
Collins, D ;
Trewin, B ;
Rahimzadeh, F ;
Tagipour, A ;
Kumar, KR ;
Revadekar, J ;
Griffiths, G ;
Vincent, L ;
Stephenson, DB ;
Burn, J ;
Aguilar, E ;
Brunet, M ;
Taylor, M ;
New, M ;
Zhai, P ;
Rusticucci, M ;
Vazquez-Aguirre, JL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D5)
[2]   Atmospheric warming and the amplification of precipitation extremes [J].
Allan, Richard P. ;
Soden, Brian J. .
SCIENCE, 2008, 321 (5895) :1481-1484
[3]   Current changes in tropical precipitation [J].
Allan, Richard P. ;
Soden, Brian J. ;
John, Viju O. ;
Ingram, William ;
Good, Peter .
ENVIRONMENTAL RESEARCH LETTERS, 2010, 5 (02)
[4]   Constraints on future changes in climate and the hydrologic cycle [J].
Allen, MR ;
Ingram, WJ .
NATURE, 2002, 419 (6903) :224-+
[5]   Enhanced MJO-like Variability at High SST [J].
Arnold, Nathan P. ;
Kuang, Zhiming ;
Tziperman, Eli .
JOURNAL OF CLIMATE, 2013, 26 (03) :988-1001
[6]   Global trends in extreme precipitation: climate models versus observations [J].
Asadieh, B. ;
Krakauer, N. Y. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2015, 19 (02) :877-891
[7]   Extreme precipitation response to climate perturbations in an atmospheric mesoscale model [J].
Attema, Jisk J. ;
Loriaux, Jessica M. ;
Lenderink, Geert .
ENVIRONMENTAL RESEARCH LETTERS, 2014, 9 (01)
[8]   Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? [J].
Ban, Nikolina ;
Schmidli, Juerg ;
Schaer, Christoph .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (04) :1165-1172
[9]   Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations [J].
Ban, Nikolina ;
Schmidli, Juerg ;
Schaer, Christoph .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (13) :7889-7907
[10]   Strong increase in convective precipitation in response to higher temperatures [J].
Berg, Peter ;
Moseley, Christopher ;
Haerter, Jan O. .
NATURE GEOSCIENCE, 2013, 6 (03) :181-185