Capacitance, induced charges, and bound states of biased carbon nanotube systems

被引:33
作者
Pomorski, P [1 ]
Pastewka, L
Roland, C
Guo, H
Wang, J
机构
[1] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[2] McGill Univ, Ctr Phys Mat, Montreal, PQ H3A 2T8, Canada
[3] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[4] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
10.1103/PhysRevB.69.115418
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Although it has long been known that the classical notions of capacitance need modification at the nanoscale, in order to account for important quantum effects, very few first-principles investigations of these properties exist for any real material systems. Here we present the results of a large-scale ab initio investigation of the capacitance properties of carbon nanotube systems. The simulations are based on a recently developed real-space nonequilibrium Green's-function approach, with special attention being paid to the treatment of the bound states present in the system. In addition, use has been made of a symmetry decomposition scheme for the charge density. This is needed both to speed up the calculations and in order to study the origins of the induced charges. Specific systems investigated include two and three nested nanotube shells, the insertion of a capped nanotube into another, a connected (12,0)/(6,6) nanotube junction, and the properties of a nanotube acting as a probe over a flat aluminum surface. First-principles estimates of the capacitance matrix coefficients for all these systems are provided, along with a discussion of the quantum corrections. For the case of the nanotube junction, the numerical value of the capacitance is sufficiently high, as to be useful for future device applications.
引用
收藏
页数:16
相关论文
共 50 条
[1]  
Ashcroft N. W., 1976, SOLID STATE PHYS
[2]   Mechanical and electrical properties of nanotubes [J].
Bernholc, J ;
Brenner, D ;
Nardelli, MB ;
Meunier, V ;
Roland, C .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :347-+
[3]   Nanotubes [J].
Bernholc, J ;
Roland, C ;
Yakobson, BI .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1997, 2 (06) :706-715
[4]   Multiprobe transport experiments on individual single-wall carbon nanotubes [J].
Bezryadin, A ;
Verschueren, ARM ;
Tans, SJ ;
Dekker, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (18) :4036-4039
[5]  
BISHOP DM, 1973, GROUP THEORY CHEM
[6]   Luttinger-liquid behaviour in carbon nanotubes [J].
Bockrath, M ;
Cobden, DH ;
Lu, J ;
Rinzler, AG ;
Smalley, RE ;
Balents, L ;
McEuen, PL .
NATURE, 1999, 397 (6720) :598-601
[7]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[8]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[9]   CAPACITANCE, ADMITTANCE, AND RECTIFICATION PROPERTIES OF SMALL CONDUCTORS [J].
BUTTIKER, M .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1993, 5 (50) :9361-9378
[10]   MESOSCOPIC CAPACITORS [J].
BUTTIKER, M ;
THOMAS, H ;
PRETRE, A .
PHYSICS LETTERS A, 1993, 180 (4-5) :364-369