Vibrational Spectroscopy for Identification of Metabolites in Biologic Samples

被引:41
作者
Hackshaw, Kevin, V [1 ]
Miller, Joseph S. [2 ]
Aykas, Didem P. [3 ,4 ]
Rodriguez-Saona, Luis [3 ]
机构
[1] Univ Texas Austin, Dell Med Sch, Dept Internal Med, Div Rheumatol, 1601 Trinity St, Austin, TX 78712 USA
[2] Ohio Univ, Dept Med, Heritage Coll Osteopath Med, Dublin, OH 43016 USA
[3] Ohio State Univ, Dept Food Sci & Technol, Columbus, OH 43210 USA
[4] Adnan Menderes Univ, Fac Engn, Dept Food Engn, TR-09100 Aydin, Turkey
来源
MOLECULES | 2020年 / 25卷 / 20期
关键词
vibrational spectroscopy; Raman spectroscopy; infrared spectroscopy; fingerprinting; metabolites; spectroscopy; diagnostics; biofluid; biomarker; ENHANCED RAMAN-SPECTROSCOPY; HUMAN TEAR FLUID; TRANSFORM INFRARED-SPECTROSCOPY; LABEL-FREE DETECTION; CEREBROSPINAL-FLUID; FTIR SPECTROSCOPY; BREAST-CANCER; IN-VIVO; TISSUE COLLECTION; DIAGNOSTIC-TOOL;
D O I
10.3390/molecules25204725
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vibrational spectroscopy (mid-infrared (IR) and Raman) and its fingerprinting capabilities offer rapid, high-throughput, and non-destructive analysis of a wide range of sample types producing a characteristic chemical "fingerprint" with a unique signature profile. Nuclear magnetic resonance (NMR) spectroscopy and an array of mass spectrometry (MS) techniques provide selectivity and specificity for screening metabolites, but demand costly instrumentation, complex sample pretreatment, are labor-intensive, require well-trained technicians to operate the instrumentation, and are less amenable for implementation in clinics. The potential for vibration spectroscopy techniques to be brought to the bedside gives hope for huge cost savings and potential revolutionary advances in diagnostics in the clinic. We discuss the utilization of current vibrational spectroscopy methodologies on biologic samples as an avenue towards rapid cost saving diagnostics.
引用
收藏
页数:23
相关论文
共 153 条
  • [91] Raman Spectroscopy in Colorectal Cancer Diagnostics: Comparison of PCA-LDA and PLS-DA Models
    Liu, Wenjing
    Sun, Zhaotian
    Chen, Jinyu
    Jing, Chuanbo
    [J]. JOURNAL OF SPECTROSCOPY, 2016, 2016
  • [92] The road to medical vibrational spectroscopy - a history
    Mantsch, Henry H.
    [J]. ANALYST, 2013, 138 (14) : 3863 - 3870
  • [93] Mardanian F, 2014, J RES MED SCI, V19, P1145
  • [94] Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care
    Marks, Haley
    Schechinger, Monika
    Garza, Javier
    Locke, Andrea
    Cote, Gerard
    [J]. NANOPHOTONICS, 2017, 6 (04) : 681 - 701
  • [95] Mehta M., 2020, Journal of Leather Science and Engineering, V2, P1, DOI [DOI 10.1186/S42825-019-0017-5, 10.1186/s42825-019-0017-5]
  • [96] SEMEN CULTURES IN DIAGNOSIS OF BACTERIAL PROSTATITIS
    MOBLEY, DF
    [J]. JOURNAL OF UROLOGY, 1975, 114 (01) : 83 - 85
  • [97] Rapid Detection and Quantification of Novel Psychoactive Substances (NPS) Using Raman Spectroscopy and Surface-Enhanced Raman Scattering
    Muhamadali, Howbeer
    Watt, Alexandra
    Xu, Yun
    Chisanga, Malama
    Subaihi, Abdu
    Jones, Carys
    Ellis, David, I
    Sutcliffe, Oliver B.
    Goodacre, Royston
    [J]. FRONTIERS IN CHEMISTRY, 2019, 7
  • [98] Identification of individual red blood cells by Raman microspectroscopy for forensic purposes: in search of a limit of detection
    Muro, Claire K.
    Lednev, Igor K.
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2017, 409 (01) : 287 - 293
  • [99] Analysis of human tear fluid by Fourier transform infrared spectroscopy
    Nagase, Y
    Yoshida, S
    Kamiyama, K
    [J]. BIOPOLYMERS, 2005, 79 (01) : 18 - 27
  • [100] Infrared spectral histopathology for cancer diagnosis: a novel approach for automated pattern recognition of colon adenocarcinoma
    Nallala, Jayakrupakar
    Diebold, Marie-Daniele
    Gobinet, Cyril
    Bouche, Olivier
    Sockalingum, Ganesh Dhruvananda
    Piot, Olivier
    Manfait, Michel
    [J]. ANALYST, 2014, 139 (16) : 4005 - 4015