Fitting freeform shapes with orthogonal bases

被引:42
作者
Forbes, G. W. [1 ]
机构
[1] QED Technol Inc, Rochester, NY 14607 USA
来源
OPTICS EXPRESS | 2013年 / 21卷 / 16期
关键词
ROBUST;
D O I
10.1364/OE.21.019061
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Orthogonality is exploited for fitting analytically-specified freeform shapes in terms of orthogonal polynomials. The end result is expressed in terms of FFTs coupled to a simple explicit form of Gaussian quadrature. Its efficiency opens the possibilities for proceeding to arbitrary numbers of polynomial terms. This is shown to create promising options for quantifying and filtering the mid-spatial frequency structure within circular domains from measurements of as-built parts. (c) 2013 Optical Society of America
引用
收藏
页码:19061 / 19081
页数:21
相关论文
共 12 条
[1]  
Abramowitz M., 1978, Handbook of Mathematical Functions
[2]   Characterizing the shape of freeform optics [J].
Forbes, G. W. .
OPTICS EXPRESS, 2012, 20 (03) :2483-2499
[3]   Robust, efficient computational methods for axially symmetric optical aspheres [J].
Forbes, G. W. .
OPTICS EXPRESS, 2010, 18 (19) :19700-19712
[4]   Robust and fast computation for the polynomials of optics [J].
Forbes, G. W. .
OPTICS EXPRESS, 2010, 18 (13) :13851-13862
[5]   Fibonacci numerical integration on a sphere [J].
Hannay, JH ;
Nye, JF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (48) :11591-11601
[6]   Wavelet methods for the representation, analysis and simulation of optical surfaces [J].
Jester, Philipp ;
Menke, Christoph ;
Urban, Karsten .
IMA JOURNAL OF APPLIED MATHEMATICS, 2012, 77 (04) :495-515
[7]  
Kaya I., 2012, ADV OPT TECHNOL, V2, P81, DOI [10.1515/aot-2012-0075, DOI 10.1515/A0T-2012-0075]
[8]   NIF optical specifications - The importance of the RMS gradient [J].
Lawson, JK ;
Auerbach, JM ;
English, RE ;
Henesian, MA ;
Hunt, JT ;
Sacks, RA ;
Trenholme, JB ;
Williams, WH ;
Shoup, MJ ;
Kelly, JH ;
Cotton, CT .
THIRD INTERNATIONAL CONFERENCE ON SOLID STATE LASERS FOR APPLICATION TO INERTIAL CONFINEMENT FUSION, PTS 1 AND 2, 1999, 3492 :336-343
[9]   Optical design with orthogonal representations of rotationally symmetric and freeform aspheres [J].
Menke, Christoph ;
Forbes, G. W. .
ADVANCED OPTICAL TECHNOLOGIES, 2013, 2 (01) :97-109
[10]  
Press W.H., 1987, Numerical Recipes: The Art of Scientific Computing