Self-supervised anomaly detection for new physics

被引:23
作者
Dillon, Barry M. [1 ]
Mastandrea, Radha [2 ,3 ]
Nachman, Benjamin [3 ,4 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.106.056005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate a method of model-agnostic anomaly detection through studying jets, collimated sprays of particles produced in high-energy collisions. We train a transformer neural network to encode simulated QCD "event space" dijets into a low-dimensional "latent space" representation. We optimize the network using the self-supervised contrastive loss, which encourages the preservation of known physical symmetries of the dijets. We then train a binary classifier to discriminate a beyond the standard model resonant dijet signal from a QCD dijet background both in the event space and the latent space representations. We find the classifier performances on the event and latent spaces to be comparable. We finally perform an anomaly detection search using a weakly supervised bump hunt on the latent space dijets, finding again a comparable performance to a search run on the physical space dijets. This opens the door to using low-dimensional latent representations as a computationally efficient space for resonant anomaly detection in generic particle collision events.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Physics-Based Self-Supervised Grasp Pose Detection [J].
Ruiz, Jon Ander ;
Iriondo, Ander ;
Lazkano, Elena ;
Ansuategi, Ander ;
Maurtua, Inaki .
MACHINES, 2025, 13 (01)
[42]   Self-supervised anomaly pattern detection for large scale industrial data [J].
Tang, Xiaoyue ;
Zeng, Shan ;
Yu, Fang ;
Yu, Wei ;
Sheng, Zhongyin ;
Kang, Zhen .
NEUROCOMPUTING, 2023, 515 :1-12
[43]   SELF-SUPERVISED AUDIO ENCODER WITH CONTRASTIVE PRETRAINING FOR RESPIRATORY ANOMALY DETECTION [J].
Kulkarni, Shubham ;
Watanabe, Hideaki ;
Homma, Fuminori .
2023 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW, 2023,
[44]   MTHM: Self-Supervised Multitask Anomaly Detection With Hard Example Mining [J].
Zhang, Chenkai ;
Wang, Yueming ;
Tan, Wenming .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
[45]   Adaptive Memory Networks With Self-Supervised Learning for Unsupervised Anomaly Detection [J].
Zhang, Yuxin ;
Wang, Jindong ;
Chen, Yiqiang ;
Yu, Han ;
Qin, Tao .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) :12068-12080
[46]   Federated Graph Anomaly Detection via Contrastive Self-Supervised Learning [J].
Kong, Xiangjie ;
Zhang, Wenyi ;
Wang, Hui ;
Hou, Mingliang ;
Chen, Xin ;
Yan, Xiaoran ;
Das, Sajal K. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (05) :7931-7944
[47]   Self-Supervised Deep Learning Framework for Anomaly Detection in Traffic Data [J].
Morris, Clint ;
Yang, Jidong J. ;
Chorzepa, Mi Geum ;
Kim, S. Sonny ;
Durham, Stephan A. .
JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2022, 148 (05)
[48]   Anomaly Detection on Attributed Networks via Contrastive Self-Supervised Learning [J].
Liu, Yixin ;
Li, Zhao ;
Pan, Shirui ;
Gong, Chen ;
Zhou, Chuan ;
Karypis, George .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) :2378-2392
[49]   Self-Supervised Attentive Generative Adversarial Networks for Video Anomaly Detection [J].
Huang, Chao ;
Wen, Jie ;
Xu, Yong ;
Jiang, Qiuping ;
Yang, Jian ;
Wang, Yaowei ;
Zhang, David .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) :9389-9403
[50]   Task-Oriented Self-supervised Learning for Anomaly Detection in Electroencephalography [J].
Zheng, Yaojia ;
Liu, Zhouwu ;
Mo, Rong ;
Chen, Ziyi ;
Zheng, Wei-Shi ;
Wang, Ruixuan .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 :193-203