Self-supervised anomaly detection for new physics

被引:23
作者
Dillon, Barry M. [1 ]
Mastandrea, Radha [2 ,3 ]
Nachman, Benjamin [3 ,4 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.106.056005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate a method of model-agnostic anomaly detection through studying jets, collimated sprays of particles produced in high-energy collisions. We train a transformer neural network to encode simulated QCD "event space" dijets into a low-dimensional "latent space" representation. We optimize the network using the self-supervised contrastive loss, which encourages the preservation of known physical symmetries of the dijets. We then train a binary classifier to discriminate a beyond the standard model resonant dijet signal from a QCD dijet background both in the event space and the latent space representations. We find the classifier performances on the event and latent spaces to be comparable. We finally perform an anomaly detection search using a weakly supervised bump hunt on the latent space dijets, finding again a comparable performance to a search run on the physical space dijets. This opens the door to using low-dimensional latent representations as a computationally efficient space for resonant anomaly detection in generic particle collision events.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation [J].
Yoa, Seungdong ;
Lee, Seungjun ;
Kim, Chiyoon ;
Kim, Hyunwoo J. .
IEEE ACCESS, 2021, 9 :147201-147211
[32]   Pavement anomaly detection based on transformer and self-supervised learning [J].
Lin, Zijie ;
Wang, Hui ;
Li, Shenglin .
AUTOMATION IN CONSTRUCTION, 2022, 143
[33]   Self-Supervised and Interpretable Anomaly Detection Using Network Transformers [J].
Marino, Daniel L. ;
Wickramasinghe, Chathurika S. ;
Rieger, Craig ;
Manic, Milos .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (05) :4252-4261
[34]   Self-supervised anomaly detection, staging and segmentation for retinal images [J].
Li, Yiyue ;
Lao, Qicheng ;
Kang, Qingbo ;
Jiang, Zekun ;
Du, Shiyi ;
Zhang, Shaoting ;
Li, Kang .
MEDICAL IMAGE ANALYSIS, 2023, 87
[35]   Visual defect obfuscation based self-supervised anomaly detection [J].
Park, YeongHyeon ;
Kang, Sungho ;
Kim, Myung Jin ;
Lee, Yeonho ;
Kim, Hyeong Seok ;
Yi, Juneho .
SCIENTIFIC REPORTS, 2024, 14 (01)
[36]   SELF-SUPERVISED SAR ANOMALY DETECTION GUIDED WITH RX DETECTOR [J].
Muzeau, M. ;
Ren, C. ;
Angelliaume, S. ;
Datcu, M. ;
Ovarlez, J. -P. .
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, :1918-1921
[37]   Understanding the limitations of self-supervised learning for tabular anomaly detection [J].
Mai, Kimberly T. ;
Davies, Toby ;
Griffin, Lewis D. .
PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (02)
[38]   Progressive self-supervised framework for anomaly detection in hyperspectral images [J].
Liu, Pan ;
Bu, Yuanyang ;
Zhao, Yongqiang ;
Kong, Seong G. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 156
[39]   SELF-SUPERVISED ANOMALY DETECTION AND A NEW BENCHMARK FOR X-RAY CARGO IMAGES [J].
Gaikwad, Bipin ;
Patra, Abani ;
Crawford, Carl ;
Miller, Eric .
2024 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2024, :2175-2181
[40]   Physics-Based Self-Supervised Grasp Pose Detection [J].
Ruiz, Jon Ander ;
Iriondo, Ander ;
Lazkano, Elena ;
Ansuategi, Ander ;
Maurtua, Inaki .
MACHINES, 2025, 13 (01)