Self-supervised anomaly detection for new physics

被引:23
作者
Dillon, Barry M. [1 ]
Mastandrea, Radha [2 ,3 ]
Nachman, Benjamin [3 ,4 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.106.056005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate a method of model-agnostic anomaly detection through studying jets, collimated sprays of particles produced in high-energy collisions. We train a transformer neural network to encode simulated QCD "event space" dijets into a low-dimensional "latent space" representation. We optimize the network using the self-supervised contrastive loss, which encourages the preservation of known physical symmetries of the dijets. We then train a binary classifier to discriminate a beyond the standard model resonant dijet signal from a QCD dijet background both in the event space and the latent space representations. We find the classifier performances on the event and latent spaces to be comparable. We finally perform an anomaly detection search using a weakly supervised bump hunt on the latent space dijets, finding again a comparable performance to a search run on the physical space dijets. This opens the door to using low-dimensional latent representations as a computationally efficient space for resonant anomaly detection in generic particle collision events.
引用
收藏
页数:12
相关论文
共 50 条
[1]   Hyperspectral anomaly detection with self-supervised anomaly prior [J].
Liu, Yidan ;
Jiang, Kai ;
Xie, Weiying ;
Zhang, Jiaqing ;
Li, Yunsong ;
Fang, Leyuan .
NEURAL NETWORKS, 2025, 187
[2]   Self-Supervised Anomaly Detection With Neural Transformations [J].
Qiu, Chen ;
Kloft, Marius ;
Mandt, Stephan ;
Rudolph, Maja .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (03) :2170-2185
[3]   SELF-SUPERVISED ANOMALY DETECTION FOR NARROWBAND SETI [J].
Zhang, Yunfan Gerry ;
Won, Ki Hyun ;
Son, Seung Woo ;
Siemion, Andrew ;
Croft, Steve .
2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, :1114-1118
[4]   Anomaly Detection on Electroencephalography with Self-supervised Learning [J].
Xu, Junjie ;
Zheng, Yaojia ;
Mao, Yifan ;
Wang, Ruixuan ;
Zheng, Wei-Shi .
2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, :363-368
[5]   Self-Supervised Autoencoders for Visual Anomaly Detection [J].
Bauer, Alexander ;
Nakajima, Shinichi ;
Mueller, Klaus-Robert .
MATHEMATICS, 2024, 12 (24)
[6]   A self-supervised anomaly detection algorithm with interpretability [J].
Wu, Zhichao ;
Yang, Xin ;
Wei, Xiaopeng ;
Yuan, Peijun ;
Zhang, Yuanping ;
Bai, Jianming .
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
[7]   Self-Supervised Masking for Unsupervised Anomaly Detection and Localization [J].
Huang, Chaoqin ;
Xu, Qinwei ;
Wang, Yanfeng ;
Wang, Yu ;
Zhang, Ya .
IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 :4426-4438
[8]   Self-supervised Sparse Representation for Video Anomaly Detection [J].
Wu, Jhih-Ciang ;
Hsieh, He-Yen ;
Chen, Ding-Jie ;
Fuh, Chiou-Shann ;
Liu, Tyng-Luh .
COMPUTER VISION, ECCV 2022, PT XIII, 2022, 13673 :729-745
[9]   Self-supervised enhanced denoising diffusion for anomaly detection [J].
Li, Shu ;
Yu, Jiong ;
Lu, Yi ;
Yang, Guangqi ;
Du, Xusheng ;
Liu, Su .
INFORMATION SCIENCES, 2024, 669
[10]   Self-Supervised Anomaly Detection from Distributed Traces [J].
Bogatinovski, Jasmin ;
Nedelkoski, Sasho ;
Cardoso, Jorge ;
Kao, Odej .
2020 IEEE/ACM 13TH INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING (UCC 2020), 2020, :342-347