Polyoxovanadate-alkoxide clusters as multielectron charge carriers for symmetric nonaqueous redox flow batteries

被引:129
作者
VanGelder, L. E. [1 ]
Kosswattaarachchi, A. M. [2 ]
Forrestel, P. L. [1 ]
Cook, T. R. [2 ]
Matson, E. M. [1 ]
机构
[1] Univ Rochester, Dept Chem, Rochester, NY 14627 USA
[2] Univ Buffalo State Univ New York, Dept Chem, Buffalo, NY 14260 USA
基金
美国国家科学基金会;
关键词
ENERGY-STORAGE; ELECTROCHEMICAL PROPERTIES; RENEWABLE ENERGY; COMPLEXES; DESIGN; ELECTROLYTE; ACETONITRILE; CONVERSION; CROSSOVER; ANOLYTE;
D O I
10.1039/c7sc05295b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Non-aqueous redox flow batteries have emerged as promising systems for large-capacity, reversible energy storage, capable of meeting the variable demands of the electrical grid. Here, we investigate the potential for a series of Lindqvist polyoxovanadate-alkoxide (POV-alkoxide) clusters, [V6O7(OR)(12)] (R = CH3, C2H5), to serve as the electroactive species for a symmetric, non-aqueous redox flow battery. We demonstrate that the physical and electrochemical properties of these POV-alkoxides make them suitable for applications in redox flow batteries, as well as the ability for ligand modification at the bridging alkoxide moieties to yield significant improvements in cluster stability during charge-discharge cycling. Indeed, the metal-oxide core remains intact upon deep charge-discharge cycling, enabling extremely high coulombic efficiencies (similar to 97%) with minimal overpotential losses (similar to 0.3 V). Furthermore, the bulky POV-alkoxide demonstrates significant resistance to deleterious crossover, which will lead to improved lifetime and efficiency in a redox flow battery.
引用
收藏
页码:1692 / 1699
页数:8
相关论文
共 59 条
[1]   Redox flow batteries for the storage of renewable energy: A review [J].
Alotto, Piergiorgio ;
Guarnieri, Massimo ;
Moro, Federico .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 29 :325-335
[2]   An historic and scientific study of the properties of metal(III) tris-acetylacetonates [J].
Arslan, Evrim ;
Lalancette, Roger A. ;
Bernal, Ivan .
STRUCTURAL CHEMISTRY, 2017, 28 (01) :201-212
[3]   Influence of solvents on species crossover and capacity decay in non-aqueous vanadium redox flow batteries: Characterization of acetonitrile and 1, 3 dioxolane solvent mixture [J].
Bamgbopa, Musbaudeen O. ;
Almheiri, Saif .
JOURNAL OF POWER SOURCES, 2017, 342 :371-381
[4]   Evaluation of Tris-Bipyridine Chromium Complexes for Flow Battery Applications: Impact of Bipyridine Ligand Structure on Solubility and Electrochemistry [J].
Cabrera, Pablo J. ;
Yang, Xingyi ;
Suttil, James A. ;
Brooner, Rachel E. M. ;
Thompson, Levi T. ;
Sanford, Melanie S. .
INORGANIC CHEMISTRY, 2015, 54 (21) :10214-10223
[5]   Complexes Containing Redox Noninnocent Ligands for Symmetric, Multielectron Transfer Nonaqueous Redox Flow Batteries [J].
Cabrera, Pablo J. ;
Yang, Xingyi ;
Sutti, James A. ;
Hawthorne, Krista L. ;
Brooner, Rachel E. M. ;
Sanford, Melanie S. ;
Thompson, Levi T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (28) :15882-15889
[6]   Application of Redox Non-Innocent Ligands to Non-Aqueous Flow Battery Electrolytes [J].
Cappillino, Patrick J. ;
Pratt, Harry D., III ;
Hudak, Nicholas S. ;
Tomson, Neil C. ;
Anderson, Travis M. ;
Anstey, Mitchell R. .
ADVANCED ENERGY MATERIALS, 2014, 4 (01)
[7]   Evaluation of electrolytes for redox flow battery applications [J].
Chakrabarti, M. H. ;
Dryfe, R. A. W. ;
Roberts, E. P. L. .
ELECTROCHIMICA ACTA, 2007, 52 (05) :2189-2195
[8]   Charge-Discharge Performance of a Novel Undivided Redox Flow Battery for Renewable Energy Storage [J].
Chakrabarti, Mohammed Harun ;
Roberts, Edward Pelham Lindfield ;
Saleem, Muhammad .
INTERNATIONAL JOURNAL OF GREEN ENERGY, 2010, 7 (04) :445-460
[9]   Molybdenum polyoxometalates as active species for energy storage in non-aqueous media [J].
Chen, Jee-Jay J. ;
Barteau, Mark A. .
JOURNAL OF ENERGY STORAGE, 2017, 13 :255-261
[10]   Electrochemical Properties of Keggin-Structure Polyoxometalates in Acetonitrile: Effects of Countercation, Heteroatom, and Framework Metal Exchange [J].
Chen, Jee-Jay J. ;
Barteau, Mark A. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (37) :9857-9864