Inverse scattering theory and trace formulae for one-dimensional Schrodinger problems with singular potentials

被引:2
作者
Rutkevich, S. B. [1 ]
Diehl, H. W. [1 ]
机构
[1] Univ Duisburg Essen, Fak Phys, D-47048 Duisburg, Germany
关键词
inverse scattering theory; trace formulae; singular Schrodinger operator; DIFFERENTIAL-OPERATORS; CRITICAL BEHAVIOR; SYSTEM; MODEL;
D O I
10.1088/1751-8113/48/37/375201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Inverse scattering theory is extended to one-dimensional Schrodinger problems with near-boundary singularities of the form v(z -> 0)similar or equal to-z(-2/4) + v(-1) z(-1). Trace formulae relating the boundary value v0 of the nonsingular part of the potential to spectral data are derived. Their potential is illustrated by applying them to a number of Schrodinger problems with singular potentials.
引用
收藏
页数:25
相关论文
共 36 条
  • [1] [Anonymous], APPL MATH SERIES
  • [2] [Anonymous], 1989, TEXTS MONOGRAPHS PHY
  • [3] [Anonymous], 1960, DOKL AKAD NAUK SSSR+
  • [4] CRITICAL BEHAVIOR OF SEMI-INFINITE SYSTEMS
    BRAY, AJ
    MOORE, MA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (11): : 1927 - 1962
  • [5] CRITICAL BEHAVIOR OF A SEMI-INFINITE SYSTEM - N-VECTOR MODEL IN LARGE-N LIMIT
    BRAY, AJ
    MOORE, MA
    [J]. PHYSICAL REVIEW LETTERS, 1977, 38 (14) : 735 - 738
  • [6] Chadan K., 1997, An Introduction to Inverse Scattering and Inverse Spectral Problems, P131, DOI [10.1137/1.9780898719710.ch4, DOI 10.1137/1.9780898719710.CH4]
  • [7] The trigonometric Rosen-Morse potential in the supersymmetric quantum mechanics and its exact solutions
    Compean, CB
    Kirchbach, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (03): : 547 - 557
  • [8] Comment on "Casimir force in the O(n → ∞) model with free boundary conditions"
    Diehl, H. W.
    Grueneberg, Daniel
    Hasenbusch, Martin
    Hucht, Alfred
    Rutkevich, Sergei B.
    Schmidt, Felix M.
    [J]. PHYSICAL REVIEW E, 2015, 91 (02):
  • [9] 0 Large-n approach to thermodynamic Casimir effects in slabs with free surfaces
    Diehl, H. W.
    Grueneberg, Daniel
    Hasenbusch, Martin
    Hucht, Alfred
    Rutkevich, Sergei B.
    Schmidt, Felix M.
    [J]. PHYSICAL REVIEW E, 2014, 89 (06):
  • [10] The O(n) φ4 model with free surfaces in the large-n limit: some exact results for boundary critical behaviour, fluctuation-induced forces and distant-wall corrections
    Diehl, H. W.
    Rutkevich, S. B.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (14)