Pervaporation multilayer membranes based on a polyelectrolyte complex of λ-carrageenan and chitosan

被引:38
作者
Kononova, Svetlana V. [1 ]
Volod'ko, Aleksandra V. [2 ]
Petrova, Valentina A. [1 ]
Kruchinina, Elena V. [1 ]
Baklagina, Yulia G. [1 ]
Chusovitin, Evgeniy A. [3 ]
Skorik, Yury A. [1 ,4 ,5 ]
机构
[1] Russian Acad Sci, Inst Macromol Cpds, Bolshoi Pr VO 31, St Petersburg 199004, Russia
[2] Russian Acad Sci, Elyakov Pacific Inst Bioorgan Chem, Far Eastern Branch, Pr 100 Letiya Vladivostoka 159, Vladivostok 690022, Russia
[3] Russian Acad Sci, Inst Automat & Control Proc, Far Eastern Branch, Ul Radio 5, Vladivostok 690041, Russia
[4] Almazov Natl Med Res Ctr, Inst Expt Med, Akkuratova Ul 2, St Petersburg 197341, Russia
[5] Tyumen State Univ, Ul Volodarskogo 6, Tyumen 625003, Russia
基金
俄罗斯科学基金会;
关键词
Chitosan; Carrageenan; Polyelectrolyte complex; Pervaporation; COMPOSITE MEMBRANES; ORGANIC-SOLVENTS; WATER MIXTURES; DEHYDRATION; SEPARATION; ETHANOL; TICHOCARPACEAE; PERFORMANCE; GIGARTINACEAE; PERMEATION;
D O I
10.1016/j.carbpol.2017.10.050
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A polyelectrolyte complex (PEC) was prepared from chitosan (CS) and lambda-carrageenan (lambda-CAR) using a layer-bylayer deposition of polyion solutions on a plated nonporous support. This material was then used as a multilayer membrane for the pervaporation separation of aqueous ethanol solutions. The fabricated complex film (25-30 mu m thick) was a multilayer system (lambda-CAR-PEC-CS) containing a polycation CS (MW 3.1 x 10(5), DD. 0.93), a polyanion lambda-CAR (MW 3.5 x10(5), extracted from the alga Chondrus armatus), and a PEC layer formed between the two polyion layers. X-ray diffraction indicated a significant structuring of the film in the region of the composite PEC-CS bilayer. The structural and morphological characteristics of the CS surface in the multilayer membrane, as revealed by atomic force microscopy, were close to the characteristics of the dense CS film. However, this structure changed following pervaporation (i.e., the distinct spherical structures on the surface disappeared). Similarly, the initially loose surface of lambda-CAR in the composite changed to an ordered domain after pervaporation. The transport properties of the pervaporation membranes were tested by examining the separation of ethanol-water mixtures of different compositions. The flux increased with an increase in the weight percentage of water in the feed mixture, but the separation capacity of the membrane was unchanged. In a range of feed concentrations of 50-94 wt%, the membrane mainly releases water with a corresponding concentration in the permeate of 99.9-99.8 wt% and substantial fluxes of 0.003-1.130 kg m(-2) h(-1) at 40 degrees C. The obtained results indicate significant prospects for the use of non-gelling type CARs for the formation of highly effective pervaporation membranes.
引用
收藏
页码:86 / 92
页数:7
相关论文
共 50 条
[31]   Homogenous polyelectrolyte complex membranes incorporated with strong ion-pairs with high pervaporation performance for dehydration of ethanol [J].
Wang, Xue-San ;
An, Quan-Fu ;
Zhao, Qiang ;
Lee, Kueir-Rarn ;
Qian, Jin-Wen ;
Gao, Cong-Jie .
JOURNAL OF MEMBRANE SCIENCE, 2013, 435 :71-79
[32]   Polyelectrolyte complexes of sulfoethyl cellulose–chitosan: effect of the structure on separation properties of multilayer membranes [J].
Svetlana V. Kononova ;
Elena V. Kruchinina ;
Valentina A. Petrova ;
Yulija G. Baklagina ;
Kira A. Romashkova ;
Anton S. Orekhov ;
Vera V. Klechkovskaya .
Cellulose, 2018, 25 :7239-7259
[33]   Synthesis and Optimization of Chitosan Ceramic-Supported Membranes in Pervaporation Ethanol Dehydration [J].
Fini, Mandi Nikbakht ;
Soroush, Sepideh ;
Montazer-Rahmati, Mohammad Mehdi .
MEMBRANES, 2018, 8 (04)
[34]   Layer-by-layer self-assembly of polyelectrolyte complexes and their multilayer films for pervaporation dehydration of isopropanol [J].
Zhao, Qiang ;
Qian, Jinwen ;
An, Quanfu ;
Sun, Zhiwei .
JOURNAL OF MEMBRANE SCIENCE, 2010, 346 (02) :335-343
[35]   Diffusion through membranes of the polyelectrolyte complex of chitosan and alginate [J].
Cárdenas, A ;
Argüelles-Monal, W ;
Goycoolea, FM ;
Higuera-Ciapara, I ;
Peniche, C .
MACROMOLECULAR BIOSCIENCE, 2003, 3 (10) :535-539
[36]   Novel Composite Membranes Based on Chitosan Copolymers with Polyacrylonitrile and Polystyrene: Physicochemical Properties and Application for Pervaporation Dehydration of Tetrahydrofuran [J].
Otvagina, Ksenia V. ;
Penkova, Anastasia V. ;
Dmitrenko, Maria E. ;
Kuzminova, Anna I. ;
Sazanova, Tatyana S. ;
Vorotyntsev, Andrey V. ;
Vorotyntsev, Ilya V. .
MEMBRANES, 2019, 9 (03)
[37]   Pervaporation performance of chitosan-poly(acrylic acid) polyelectrolyte complex membranes for dehydration of ethylene glycol aqueous solution [J].
Hu, Changlai ;
Li, Ben ;
Guo, Ruili ;
Wu, Hong ;
Jiang, Zhongyi .
SEPARATION AND PURIFICATION TECHNOLOGY, 2007, 55 (03) :327-334
[38]   BSA and Fibrinogen Adsorption on Chitosan/κ-Carrageenan Polyelectrolyte Complexes [J].
Carneiro, Thiane N. ;
Novaes, Denise S. ;
Rabelo, Rodrigo B. ;
Celebi, Betul ;
Chevallier, Pascale ;
Mantovani, Diego ;
Beppu, Marisa M. ;
Vieira, Rodrigo S. .
MACROMOLECULAR BIOSCIENCE, 2013, 13 (08) :1072-1083
[39]   UV-crosslinked chitosan/polyvinylpyrrolidone blended membranes for pervaporation [J].
Zhang, Qiu Gen ;
Hu, Wen Wei ;
Zhu, Ai Mei ;
Liu, Qing Lin .
RSC ADVANCES, 2013, 3 (06) :1855-1861
[40]   Preparation and characterization of polyelectrolyte complex membranes bearing alkyl side chains for the pervaporation dehydration of alcohols [J].
Liu, Tao ;
An, Quan-Fu ;
Zhao, Qiang ;
Lee, Kueir-Rarn ;
Zhu, Bao-Ku ;
Qian, Jin-Wen ;
Gao, Cong-Jie .
JOURNAL OF MEMBRANE SCIENCE, 2013, 429 :181-189