A blockchain-based audit approach for encrypted data in federated learning

被引:17
作者
Sun, Zhe [1 ]
Wan, Junping [1 ]
Yin, Lihua [1 ]
Cao, Zhiqiang [1 ]
Luo, Tianjie [1 ]
Wang, Bin [2 ]
机构
[1] Guangzhou Univ, Cyberspace Inst Adv Technol, Guangzhou 510006, Peoples R China
[2] Zhejiang Univ, Coll Elect Engn, Hangzhou 310058, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Audit; Data quality; Blockchain; Secure aggregation; Federated learning; SECURE; MECHANISM; INTERNET; THINGS;
D O I
10.1016/j.dcan.2022.05.006
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The development of data-driven artificial intelligence technology has given birth to a variety of big data appli-cations. Data has become an essential factor to improve these applications. Federated learning, a privacy -preserving machine learning method, is proposed to leverage data from different data owners. It is typically used in conjunction with cryptographic methods, in which data owners train the global model by sharing encrypted model updates. However, data encryption makes it difficult to identify the quality of these model updates. Malicious data owners may launch attacks such as data poisoning and free-riding. To defend against such attacks, it is necessary to find an approach to audit encrypted model updates. In this paper, we propose a blockchain-based audit approach for encrypted gradients. It uses a behavior chain to record the encrypted gra-dients from data owners, and an audit chain to evaluate the gradients' quality. Specifically, we propose a privacy -preserving homomorphic noise mechanism in which the noise of each gradient sums to zero after aggregation, ensuring the availability of aggregated gradient. In addition, we design a joint audit algorithm that can locate malicious data owners without decrypting individual gradients. Through security analysis and experimental evaluation, we demonstrate that our approach can defend against malicious gradient attacks in federated learning.
引用
收藏
页码:614 / 624
页数:11
相关论文
共 50 条
  • [1] Blockchain-Based Federated Learning: A Survey and New Perspectives
    Ning, Weiguang
    Zhu, Yingjuan
    Song, Caixia
    Li, Hongxia
    Zhu, Lihui
    Xie, Jinbao
    Chen, Tianyu
    Xu, Tong
    Xu, Xi
    Gao, Jiwei
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [2] A Survey on Blockchain-Based Federated Learning
    Wu, Lang
    Ruan, Weijian
    Hu, Jinhui
    He, Yaobin
    Pau, Giovanni
    FUTURE INTERNET, 2023, 15 (12)
  • [3] Blockchain-based federated learning methodologies in smart environments
    Li, Dong
    Luo, Zai
    Cao, Bo
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (04): : 2585 - 2599
  • [4] A Survey on Blockchain-Based Federated Learning and Data Privacy
    Chhetri, Bipin
    Gopali, Saroj
    Olapojoye, Rukayat
    Dehbashi, Samin
    Namin, Akhar Siami
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 1311 - 1318
  • [5] Blockchain-Based Federated Learning for Data Privacy and Security
    Murugan, G.
    Divyashree, D.
    Ravisankar, P.
    Vasudevan, M.
    Karthikeyan, T.
    Singh, Devesh Pratap
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [6] A Blockchain-Based Model Migration Approach for Secure and Sustainable Federated Learning in IoT Systems
    Zhang, Cheng
    Xu, Yang
    Elahi, Haroon
    Zhang, Deyu
    Tan, Yunlin
    Chen, Junxian
    Zhang, Yaoxue
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (08) : 6574 - 6585
  • [7] Privacy-preserving in Blockchain-based Federated Learning systems
    Sameera, K. M.
    Nicolazzo, Serena
    Arazzi, Marco
    Nocera, Antonino
    Rehiman, K. A. Rafidha
    Vinod, P.
    Conti, Mauro
    COMPUTER COMMUNICATIONS, 2024, 222 : 38 - 67
  • [8] DSFL: a blockchain-based data sharing and federated learning framework
    Niu, Haiqian
    Zhang, Xing
    Chu, Zhiguang
    Shi, Wei
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [9] Privacy-Preserving Data Sharing in IoV: A Federated Learning and Blockchain-Based Approach
    Xia, Zhuoqun
    Sun, Jiahao
    Tan, Jingjing
    2024 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS 2024, 2024, : 511 - 516
  • [10] Decentralized IoT data sharing: A blockchain-based federated learning approach with joint optimizations for efficiency and privacy
    Cheng, Ziwen
    Liu, Yi
    Wu, Chao
    Pan, Yongqi
    Zhao, Liushun
    Deng, Xin
    Zhu, Cheng
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 160 : 547 - 563