S100A4 and its role in metastasis - computational integration of data on biological networks

被引:14
作者
Buetti-Dinh, Antoine [1 ,2 ,3 ]
Pivkin, Igor V. [2 ,4 ]
Friedman, Ran [1 ,3 ]
机构
[1] Linnaeus Univ, Dept Chem & Biomed Sci, Kalmar, Sweden
[2] Univ Svizzera Italiana, Fac Informat, Inst Computat Sci, Lugano, Switzerland
[3] Linnaeus Univ, Ctr Excellence Biomat Chem, Kalmar, Sweden
[4] Swiss Inst Bioinformat, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
MATRIX METALLOPROTEINASES; BREAST-CANCER; MODEL; PERTURBATIONS; EXPRESSION; SOFTWARE;
D O I
10.1039/c5mb00110b
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Characterising signal transduction networks is fundamental to our understanding of biology. However, redundancy and different types of feedback mechanisms make it difficult to understand how variations of the network components contribute to a biological process. In silico modelling of signalling interactions therefore becomes increasingly useful for the development of successful therapeutic approaches. Unfortunately, quantitative information cannot be obtained for all of the proteins or complexes that comprise the network, which limits the usability of computational models. We developed a flexible computational framework for the analysis of biological signalling networks. We demonstrate our approach by studying the mechanism of metastasis promotion by the S100A4 protein, and suggest therapeutic strategies. The advantage of the proposed method is that only limited information (interaction type between species) is required to set up a steady-state network model. This permits a straightforward integration of experimental information where the lack of details are compensated by efficient sampling of the parameter space. We investigated regulatory properties of the S100A4 network and the role of different key components. The results show that S100A4 enhances the activity of matrix metalloproteinases (MMPs), causing higher cell dissociation. Moreover, it leads to an increased stability of the pathological state. Thus, avoiding metastasis in S100A4-expressing tumours requires multiple target inhibition. Moreover, the analysis could explain the previous failure of MMP inhibitors in clinical trials. Finally, our method is applicable to a wide range of biological questions that can be represented as directional networks.
引用
收藏
页码:2238 / 2246
页数:9
相关论文
共 49 条
[1]   Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin [J].
Bancaud, Aurelien ;
Huet, Sebastien ;
Daigle, Nathalie ;
Mozziconacci, Julien ;
Beaudouin, Joel ;
Ellenberg, Jan .
EMBO JOURNAL, 2009, 28 (24) :3785-3798
[2]  
Bjornland K, 1999, CANCER RES, V59, P4702
[3]   S100A4 and Metastasis A Small Actor Playing Many Roles [J].
Boye, Kjetil ;
Maelandsmo, Gunhild M. .
AMERICAN JOURNAL OF PATHOLOGY, 2010, 176 (02) :528-535
[4]  
Che G, 2006, NEOPLASMA, V53, P530
[5]  
Chen HY, 2014, AM J CANCER RES, V4, P89
[6]   Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data [J].
Chen, William W. ;
Schoeberl, Birgit ;
Jasper, Paul J. ;
Niepel, Mario ;
Nielsen, Ulrik B. ;
Lauffenburger, Douglas A. ;
Sorger, Peter K. .
MOLECULAR SYSTEMS BIOLOGY, 2009, 5
[7]   Robustness analysis of cellular memory in an autoactivating positive feedback system [J].
Cheng, Zhang ;
Liu, Feng ;
Zhang, Xiao-Peng ;
Wang, Wei .
FEBS LETTERS, 2008, 582 (27) :3776-3782
[8]   Global Gene Expression Profiling Of Human Pleural Mesotheliomas: Identification of Matrix Metalloproteinase 14 (MMP-14) as Potential Tumour Target [J].
Crispi, Stefania ;
Calogero, Raffaele A. ;
Santini, Mario ;
Mellone, Pasquale ;
Vincenzi, Bruno ;
Citro, Gennaro ;
Vicidomini, Giovanni ;
Fasano, Silvia ;
Meccariello, Rosaria ;
Cobellis, Gilda ;
Menegozzo, Simona ;
Pierantoni, Riccardo ;
Facciolo, Francesco ;
Baldi, Alfonso ;
Menegozzo, Massimo .
PLOS ONE, 2009, 4 (09)
[9]   Efficient Reverse-Engineering of a Developmental Gene Regulatory Network [J].
Crombach, Anton ;
Wotton, Karl R. ;
Cicin-Sain, Damjan ;
Ashyraliyev, Maksat ;
Jaeger, Johannes .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (07)
[10]   Spatial and temporal diversity in genomic instability processes defines lung cancer evolution [J].
de Bruin, Elza C. ;
McGranahan, Nicholas ;
Mitter, Richard ;
Salm, Max ;
Wedge, David C. ;
Yates, Lucy ;
Jamal-Hanjani, Mariam ;
Shafi, Seema ;
Murugaesu, Nirupa ;
Rowan, Andrew J. ;
Groenroos, Eva ;
Muhammad, Madiha A. ;
Horswell, Stuart ;
Gerlinger, Marco ;
Varela, Ignacio ;
Jones, David ;
Marshall, John ;
Voet, Thierry ;
Van Loo, Peter ;
Rassl, Doris M. ;
Rintoul, Robert C. ;
Janes, Sam M. ;
Lee, Siow-Ming ;
Forster, Martin ;
Ahmad, Tanya ;
Lawrence, David ;
Falzon, Mary ;
Capitanio, Arrigo ;
Harkins, Timothy T. ;
Lee, Clarence C. ;
Tom, Warren ;
Teefe, Enock ;
Chen, Shann-Ching ;
Begum, Sharmin ;
Rabinowitz, Adam ;
Phillimore, Benjamin ;
Spencer-Dene, Bradley ;
Stamp, Gordon ;
Szallasi, Zoltan ;
Matthews, Nik ;
Stewart, Aengus ;
Campbell, Peter ;
Swanton, Charles .
SCIENCE, 2014, 346 (6206) :251-256