Oak loss increases foliar nitrogen, δ15N and growth rates of Betula lenta in a northern temperate deciduous forest

被引:23
|
作者
Falxa-Raymond, Nancy [1 ]
Patterson, Angelica E. [2 ,4 ]
Schuster, William S. F. [3 ]
Griffin, Kevin L. [1 ,4 ]
机构
[1] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY 10027 USA
[2] Columbia Univ Barnard Coll, Dept Environm Sci, New York, NY 10027 USA
[3] Black Rock Forest Consortium, Cornwall, NY 12518 USA
[4] Lamont Doherty Earth Observ, Dept Earth & Environm Sci, Palisades, NY 10964 USA
基金
美国国家科学基金会;
关键词
black birch; forest disturbance; nitrate reductase; nitrogen cycling; oak girdling; stable isotopes; temperate forest; NITRATE REDUCTASE-ACTIVITY; CARBON ISOTOPE DISCRIMINATION; SOIL-NITROGEN; N-15; ABUNDANCE; NEW-YORK; BIOGEOCHEMICAL CYCLES; PHYTOPHTHORA-RAMORUM; MYCORRHIZAL FUNGI; NATURAL-ABUNDANCE; EASTERN TENNESSEE;
D O I
10.1093/treephys/tps068
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Oak forests dominate much of the eastern USA, but their future is uncertain due to a number of threats and widespread failure of oak regeneration. A sudden loss of oaks (Quercus spp.) could be accompanied by major changes in forest nitrogen (N) cycles with important implications for plant nutrient uptake and tree species composition. In this study, we measured the changes in N use and growth rates of black birch trees (Betula lenta L.) following oak girdling at the Black Rock Forest in southeastern New York, USA. Data were collected from nine experimental plots composed of three treatments: 100% oaks girdled (OG), 50% oaks girdled (O50) and control (C). Foliar N concentration and foliar N-15 abundance increased significantly in the oak-girdled plots relative to the control, indicating that the loss of oaks significantly altered N cycling dynamics. As mineralization and nitrification rates increase following oak loss, black birch trees increase N absorption as indicated by higher foliar N content and increased growth rates. Foliar N concentration increased by 15.5% in the O50 and 30.6% in the OG plots relative to the control, while O50 and OG plots were enriched in N-15 by 1.08 parts per thousand and 3.33 parts per thousand, respectively (P < 0.0001). A 641% increase in black birch growth rates in OG plots suggests that this species is able to respond to additional N availability and/or increased light availability. The loss of oaks and subsequent increase in black birch productivity may have a lasting impact on ecosystem form and function.
引用
收藏
页码:1092 / 1101
页数:10
相关论文
共 36 条