Variable Admittance Control With Virtual Stiffness Guidance for Human-Robot Collaboration

被引:22
|
作者
Bae, Jangho [1 ]
Kim, Kyungnam [1 ]
Huh, Jaemyung [1 ]
Hong, Daehie [1 ]
机构
[1] Korea Univ, Sch Mech Engn, Seoul 02841, South Korea
关键词
Human-robot collaboration; variable admittance control; virtual stiffness guidance; hydraulic manipulator; manual material handling; IMPEDANCE CONTROL; COOPERATION; MANIPULATORS; STABILITY; FIXTURES; SYSTEMS;
D O I
10.1109/ACCESS.2020.3004872
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human-robot collaboration (HRC) is a promising solution for expanding the use of robotic systems in unstructured environments and complex processes in various industries. In this paper, a novel variable admittance control (VAC) with virtual stiffness guidance (VSG) is proposed to improve the performance of HRC. The proposed VAC prevents unnecessary changes of the damping parameter by classifying the human intentions in the low-velocity region, which results in smooth movement. Additionally, the VAC with VSG makes the robot actively assist an operator using a virtual spring. Under the proposed VSG scheme, the equilibrium position of the virtual spring can be adjusted by the operator during a task. The proposed control strategies are implemented in a four-degree-of-freedom hydraulic manipulator referred to as HydCobot. Two experimental tasks for evaluating the accuracy, effort, and elapsed time are conducted to validate the effectiveness of the proposed methods. The results indicate that the proposed methods effectively enhance the performance of HRC.
引用
收藏
页码:117335 / 117346
页数:12
相关论文
共 50 条
  • [41] Force tracking control for motion synchronization in human-robot collaboration
    Li, Yanan
    Ge, Shuzhi Sam
    ROBOTICA, 2016, 34 (06) : 1260 - 1281
  • [42] Model-Based Reinforcement Learning Variable Impedance Control for Human-Robot Collaboration
    Roveda, Loris
    Maskani, Jeyhoon
    Franceschi, Paolo
    Abdi, Arash
    Braghin, Francesco
    Tosatti, Lorenzo Molinari
    Pedrocchi, Nicola
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2020, 100 (02) : 417 - 433
  • [43] Fractional Order Admittance Control for Physical Human-Robot Interaction
    Aydin, Yusuf
    Tokatli, Ozan
    Patoglu, Volkan
    Basdogan, Cagatay
    2017 IEEE WORLD HAPTICS CONFERENCE (WHC), 2017, : 257 - 262
  • [44] Virtual Reality Study of Human Adaptability in Industrial Human-Robot Collaboration
    Fratczak, Piotr
    Goh, Yee Mey
    Kinnell, Peter
    Justham, Laura
    Soltoggio, Andrea
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON HUMAN-MACHINE SYSTEMS (ICHMS), 2020, : 94 - 99
  • [45] Virtual reality platform for design and evaluation of human-robot collaboration in assembly manufacturing
    Gustavsson, Patrik
    Syberfeldt, Anna
    Holm, Magnus
    INTERNATIONAL JOURNAL OF MANUFACTURING RESEARCH, 2023, 18 (01) : 28 - 49
  • [46] Model-Based Reinforcement Learning Variable Impedance Control for Human-Robot Collaboration
    Loris Roveda
    Jeyhoon Maskani
    Paolo Franceschi
    Arash Abdi
    Francesco Braghin
    Lorenzo Molinari Tosatti
    Nicola Pedrocchi
    Journal of Intelligent & Robotic Systems, 2020, 100 : 417 - 433
  • [47] Human-Robot Collaboration: Task sharing through Virtual Reality
    Shu, Beibei
    Sziebig, Gabor
    Pieska, Sakari
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 6040 - 6044
  • [48] Concept for Virtual Safety Training System for Human-Robot Collaboration
    Dianatfar, Morteza
    Latokartano, Jyrki
    Lanz, Minna
    30TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING (FAIM2021), 2020, 51 : 54 - 60
  • [49] Multimodal Interface for Human-Robot Collaboration
    Rautiainen, Samu
    Pantano, Matteo
    Traganos, Konstantinos
    Ahmadi, Seyedamir
    Saenz, Jose
    Mohammed, Wael M.
    Lastra, Jose L. Martinez
    MACHINES, 2022, 10 (10)
  • [50] Mixed reality-enhanced spatial admittance control for human-robot collaboration using preferential Bayesian optimization
    Tran, Liem Duc
    Yamawaki, Tasuku
    Yashima, Masahito
    MECHANICAL ENGINEERING JOURNAL, 2025, 12 (01):