Front side plasmonic effect on thin silicon epitaxial solar cells

被引:21
作者
El Daif, Ounsi [1 ]
Tong, Lianming [2 ]
Figeys, Bruno [1 ]
Van Nieuwenhuysen, Kris [1 ]
Dmitriev, Alexander [2 ]
Van Dorpe, Pol [1 ]
Gordon, Ivan [1 ]
Dross, Frederic [1 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Chalmers Univ Technol, S-41296 Gothenburg, Sweden
关键词
Plasmons; Thin film solar cells; Crystalline silicon; Fano; Absorption; NANOSTRUCTURES;
D O I
10.1016/j.solmat.2012.05.009
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We study the effect of metal nanoparticles, showing localised plasmonic resonances, on the spectrally resolved efficiency of thin film crystalline silicon solar cells. We investigate model structures: silver (Ag) nanodiscs on the surface of epitaxial cells grown on highly doped silicon substrates, with a controlled micron-scale thickness. The cells have no back reflector in order to exclusively study the effect of the front surface on their optical properties. The nanodiscs were deposited through hole-mask colloidal lithography, which is a low-cost, bottom-up and extremely versatile technique. As opposed to many other works, we use as benchmarks both bare silicon cells and cells with a dielectric antireflection coating. We optically observe a resonance showing an absorption increase, found to be controllable by the discs parameters. We also see an increase in short-circuit current with respect to bare cells, but we see a decrease in efficiency with respect to cells with a dielectric antireflection coating, due to losses at short wavelengths. As the material properties are not notably affected by the particles deposition, we show that the main loss mechanisms are an important parasitic absorption in the nanoparticles and destructive interferences. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 63
页数:6
相关论文
共 23 条
[1]   Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates [J].
Beck, F. J. ;
Verhagen, E. ;
Mokkapati, S. ;
Polman, A. ;
Catchpole, K. R. .
OPTICS EXPRESS, 2011, 19 (06) :A146-A156
[2]   Tunable light trapping for solar cells using localized surface plasmons [J].
Beck, F. J. ;
Polman, A. ;
Catchpole, K. R. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
[3]   Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells [J].
Depauw, V. ;
Qiu, Y. ;
Van Nieuwenhuysen, K. ;
Gordon, I. ;
Poortmans, J. .
PROGRESS IN PHOTOVOLTAICS, 2011, 19 (07) :844-850
[4]   Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles [J].
Derkacs, D. ;
Lim, S. H. ;
Matheu, P. ;
Mar, W. ;
Yu, E. T. .
APPLIED PHYSICS LETTERS, 2006, 89 (09)
[5]   How front side plasmonic nanostructures enhance solar cell efficiency [J].
Diukman, Iddo ;
Orenstein, Meir .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (09) :2628-2631
[6]  
Dross F., 2012, PROGR PHOTOVOLTAICS
[7]  
El Daif O., 2012, MRS ONLINE P LIB, V1391
[8]   Absorbing one-dimensional planar photonic crystal for amorphous silicon solar cell [J].
El Daif, Ounsi ;
Drouard, Emmanuel ;
Gomard, Guillaume ;
Kaminski, Anne ;
Fave, Alain ;
Lemiti, Mustapha ;
Ahn, Sungmo ;
Kim, Sihan ;
Roca i Cabarrocas, Pere ;
Jeon, Heonsu ;
Seassal, Christian .
OPTICS EXPRESS, 2010, 18 (19) :A293-A299
[9]  
Figeys B., 2011, 11113791V1CONDMATMES
[10]   Hole-mask colloidal lithography [J].
Fredriksson, Hans ;
Alaverdyan, Yury ;
Dmitriev, Alexandre ;
Langhammer, Christoph ;
Sutherland, Duncan S. ;
Zaech, Michael ;
Kasemo, Bengt .
ADVANCED MATERIALS, 2007, 19 (23) :4297-+