Kitaev honeycomb and other exotic spin models with polar molecules

被引:59
作者
Gorshkov, Alexey V. [1 ,2 ]
Hazzard, Kaden R. A. [2 ,3 ,4 ]
Rey, Ana Maria [2 ,3 ,4 ]
机构
[1] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] NIST, JILA, Boulder, CO 80309 USA
[4] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
polar molecules; spin models; quantum magnetism; dipole-dipole interactions; Kitaev honeycomb model; LATTICE; ATOMS; GAS; ANYONS;
D O I
10.1080/00268976.2013.800604
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We show that ultracold polar molecules pinned in an optical lattice can be used to access a variety of exotic spin models, including the Kitaev honeycomb model. Treating each molecule as a rigid rotor, we use DC electric and microwave fields to define superpositions of rotational levels as effective spin degrees of freedom, while dipole-dipole interactions give rise to interactions between the spins. In particular, we show that, with sufficient microwave control, the interaction between two spins can be written as a sum of five independently controllable Hamiltonian terms proportional to the five rank-2 spherical harmonics Y-2,Y- q(, phi), where (, phi) are the spherical coordinates of the vector connecting the two molecules. To demonstrate the potential of this approach beyond the simplest examples studied in [S.R. Manmana etal., Phys. Rev. B. 87, 081106 (2013)], we focus on the realisation of the Kitaev honeycomb model, which can support exotic non-Abelian anyonic excitations. We also discuss the possibility of generating spin Hamiltonians with arbitrary spin S, including those exhibiting SU(N=2S+1) symmetry.
引用
收藏
页码:1908 / 1916
页数:9
相关论文
共 75 条
[1]   Bose-Einstein Condensation of Erbium [J].
Aikawa, K. ;
Frisch, A. ;
Mark, M. ;
Baier, S. ;
Rietzler, A. ;
Grimm, R. ;
Ferlaino, F. .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)
[2]   Coherent Transfer of Photoassociated Molecules into the Rovibrational Ground State [J].
Aikawa, K. ;
Akamatsu, D. ;
Hayashi, M. ;
Oasa, K. ;
Kobayashi, J. ;
Naidon, P. ;
Kishimoto, T. ;
Ueda, M. ;
Inouye, S. .
PHYSICAL REVIEW LETTERS, 2010, 105 (20)
[3]   Theoretical progress in many-body physics with ultracold dipolar gases [J].
Baranov, M. A. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 464 (03) :71-111
[4]   Condensed Matter Theory of Dipolar Quantum Gases [J].
Baranov, M. A. ;
Dalmonte, M. ;
Pupillo, G. ;
Zoller, P. .
CHEMICAL REVIEWS, 2012, 112 (09) :5012-5061
[5]   Quantum magnetism with multicomponent dipolar molecules in an optical lattice [J].
Barnett, R ;
Petrov, D ;
Lukin, M ;
Demler, E .
PHYSICAL REVIEW LETTERS, 2006, 96 (19)
[6]   Toric codes and quantum doubles from two-body Hamiltonians [J].
Brell, Courtney G. ;
Flammia, Steven T. ;
Bartlett, Stephen D. ;
Doherty, Andrew C. .
NEW JOURNAL OF PHYSICS, 2011, 13
[7]   Designing spin-1 lattice models using polar molecules [J].
Brennen, Gavin K. ;
Micheli, Andrea ;
Zoller, Peter .
NEW JOURNAL OF PHYSICS, 2007, 9
[8]  
Brown J M., 2003, Rotational Spectroscopy of Diatomic Molecules
[9]   Three-body interactions with cold polar molecules [J].
Buechler, H. P. ;
Micheli, A. ;
Zoller, P. .
NATURE PHYSICS, 2007, 3 (10) :726-731
[10]   Strongly correlated 2D quantum phases with cold polar molecules:: Controlling the shape of the interaction potential [J].
Buechler, H. P. ;
Demler, E. ;
Lukin, M. ;
Micheli, A. ;
Prokof'ev, N. ;
Pupillo, G. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)