A FRONT TRACKING METHOD FOR A STRONGLY COUPLED PDE-ODE SYSTEM WITH MOVING DENSITY CONSTRAINTS IN TRAFFIC FLOW

被引:26
作者
Delle Monache, Maria Laura [1 ]
Goatin, Paola [1 ]
机构
[1] Inria Sophia Antipolis Mediterranee, EPI OPALE, F-06902 Sophia Antipolis, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2014年 / 7卷 / 03期
基金
欧洲研究理事会;
关键词
Conservation laws with constraints; traffic flow modeling; PDE-ODE model; numerical simulations; front-tracking methods; BOTTLENECKS; WAVES;
D O I
10.3934/dcdss.2014.7.435
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a numerical method for tracking a bus trajectory on a road network. The mathematical model taken into consideration is a strongly coupled PDE-ODE system: the PDE is a scalar hyperbolic conservation law describing the traffic flow while the ODE, that describes the bus trajectory, needs to be intended in a Caratheodory sense. The moving constraint is given by an inequality on the flux which accounts for the bottleneck created by the bus on the road. The finite volume algorithm uses a locally non-uniform moving mesh which tracks the bus position. Some numerical tests are shown to describe the behavior of the solution.
引用
收藏
页码:435 / 447
页数:13
相关论文
共 18 条
[1]   Finite volume schemes for locally constrained conservation laws [J].
Andreianov, Boris ;
Goatin, Paola ;
Seguin, Nicolas .
NUMERISCHE MATHEMATIK, 2010, 115 (04) :609-645
[2]  
Bardos C., 1979, Commun. Partial Differ. Equ., V4, P1017, DOI [10.1080/03605307908820117, DOI 10.1080/03605307908820117]
[3]   Mixed systems: ODEs - Balance laws [J].
Borsche, Raul ;
Colombo, Rinaldo M. ;
Garavello, Mauro .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) :2311-2338
[4]   Convergent and conservative schemes for nonclassical solutions based on kinetic relations. I [J].
Boutin, Benjamin ;
Chalons, Christophe ;
Lagoutiere, Frederic ;
LeFloch, Philippe G. .
INTERFACES AND FREE BOUNDARIES, 2008, 10 (03) :399-421
[5]   A tracking algorithm for car paths on road networks [J].
Bretti, Gabriella ;
Piccoli, Benedetto .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (02) :510-531
[6]   GENERAL CONSTRAINED CONSERVATION LAWS. APPLICATION TO PEDESTRIAN FLOW MODELING [J].
Chalons, Christophe ;
Goatin, Paola ;
Seguin, Nicolas .
NETWORKS AND HETEROGENEOUS MEDIA, 2013, 8 (02) :433-463
[7]   A well posed conservation law with a variable unilateral constraint [J].
Colombo, Rinaldo M. ;
Goatin, Paola .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (02) :654-675
[8]   A Holder continuous ODE related to traffic flow [J].
Colombo, RM ;
Marson, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :759-772
[9]   Moving bottlenecks: A numerical method that converges in flows [J].
Daganzo, CF ;
Laval, JA .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2005, 39 (09) :855-863
[10]   On the numerical treatment of moving bottlenecks [J].
Daganzo, CF ;
Laval, JA .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2005, 39 (01) :31-46