Superior electrochemical performance of LiCoO2 electrodes enabled by conductive Al2O3-doped ZnO coating via magnetron sputtering

被引:68
作者
Dai, Xinyi [1 ]
Zhou, Aijun [1 ]
Xu, Jin [1 ]
Yang, Bin [1 ]
Wang, Liping [1 ]
Li, Jingze [1 ]
机构
[1] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Sch Microelect & Solid State Elect, Chengdu 610054, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Lithium cobalt oxide; Magnetron sputtering; Electrode coating; Alumina-doped zinc oxide; Solid electrolyte interface; LITHIUM-ION BATTERIES; ATOMIC LAYER DEPOSITION; RAY-ABSORPTION SPECTROSCOPY; VOLTAGE CYCLING BEHAVIOR; LI-ION; CATHODE MATERIALS; POSITIVE ELECTRODE; RECHARGEABLE BATTERIES; SECONDARY BATTERIES; NEGATIVE ELECTRODE;
D O I
10.1016/j.jpowsour.2015.08.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A conductive Al2O3-doped ZnO (AZO) layer is coated directly on the LiCoO2 (LCO) porous composite electrode by magnetron sputtering of an AZO target, offering more efficient electron transfer and a stabilized interface layer. Up to 90% of the initial capacity of the AZO-coated electrode can be retained (173 mAh g(-1)) after 150 cycles between 3.0 and 4.5 V vs. Li/Li+. Meanwhile, the rate performance is remarkably improved showing a reversible capacity of 112 mAh g(-1) at 12 C. The formation of amorphous solid electrolyte interface (SEI) observed on the uncoated LCO electrode is effectively impeded on the AZO-coated one. Acting as an intermediate barrier, the AZO layer can prevent chemical dissolution of the active materials by forming a thin passivation layer on the electrode surface containing some metal fluorides which are chemically inactive and ionically conductive. The positive role of the AZO coating is still effective under a more severe condition tested with an upper cut-off potential of 4.7 V. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 122
页数:9
相关论文
共 68 条
[1]   The Effect of Calcination Temperature on the Electrochemical Performance of ZnO Coated LiMn2O4/MWCNT Nanocomposite Cathodes [J].
Akbulut, A. ;
Cetinkaya, T. ;
Guler, M. O. ;
Akbulut, H. .
ACTA PHYSICA POLONICA A, 2014, 125 (02) :331-334
[2]   Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries [J].
Amatucci, GG ;
Tarascon, JM ;
Klein, LC .
SOLID STATE IONICS, 1996, 83 (1-2) :167-173
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Capacity fade mechanisms and side reactions in lithium-ion batteries [J].
Arora, P ;
White, RE ;
Doyle, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (10) :3647-3667
[5]   On the capacity fading of LiCoO2 intercalation electrodes:: the effect of cycling, storage, temperature, and surface film forming additives [J].
Aurbach, D ;
Markovsky, B ;
Rodkin, A ;
Levi, E ;
Cohen, YS ;
Kim, HJ ;
Schmidt, M .
ELECTROCHIMICA ACTA, 2002, 47 (27) :4291-4306
[6]   Thermodynamic Aspects of Cathode Coatings for Lithium-Ion Batteries [J].
Aykol, Muratahan ;
Kirklin, Scott ;
Wolverton, C. .
ADVANCED ENERGY MATERIALS, 2014, 4 (17)
[7]   Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifiying the positive electrode with alumina [J].
Bettge, Martin ;
Li, Yan ;
Sankaran, Bharat ;
Rago, Nancy Dietz ;
Spila, Timothy ;
Haasch, Richard T. ;
Petrov, Ivan ;
Abraham, Daniel P. .
JOURNAL OF POWER SOURCES, 2013, 233 :346-357
[8]   Electrochemical performance of SnO2:Sb-MWCNT nanocomposites for Li-ion batteries [J].
Cevher, Ozgur ;
Guler, Mehmet Oguz ;
Tocoglu, Ubeyd ;
Akbulut, Hatem .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2014, 38 (04) :499-508
[9]   Enhanced high-temperature cycle performance of LiFePO4/carbon batteries by an ion-sieving metal coating on negative electrode [J].
Chang, Hao-Hsun ;
Wu, Hung-Chun ;
Wu, Nae-Lih .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (12) :1823-1826
[10]   Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V [J].
Chen, ZH ;
Dahn, JR .
ELECTROCHIMICA ACTA, 2004, 49 (07) :1079-1090