Silicon qubit fidelities approaching incoherent noise limits via pulse engineering

被引:167
作者
Yang, C. H. [1 ]
Chan, K. W. [1 ]
Harper, R. [2 ]
Huang, W. [1 ]
Evans, T. [2 ]
Hwang, J. C. C. [1 ]
Hensen, B. [1 ]
Laucht, A. [1 ]
Tanttu, T. [1 ]
Hudson, F. E. [1 ]
Flammia, S. T. [2 ]
Itoh, K. M. [3 ]
Morello, A. [1 ]
Bartlett, S. D. [2 ]
Dzurak, A. S. [1 ]
机构
[1] Univ New South Wales, Sch Elect Engn & Telecommun, Ctr Quantum Computat & Commun Technol, Sydney, NSW, Australia
[2] Univ Sydney, Sch Phys, Ctr Engn Quantum Syst, Sydney, NSW, Australia
[3] Keio Univ, Sch Fundamental Sci & Technol, Kohoku Ku, Yokohama, Kanagawa, Japan
基金
澳大利亚研究理事会;
关键词
QUANTUM-DOT; SPIN; COHERENCE; GATES;
D O I
10.1038/s41928-019-0234-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spin qubits created from gate-defined silicon metal-oxide-semiconductor quantum dots are a promising architecture for quantum computation. The high single qubit fidelities possible in these systems, combined with quantum error correcting codes, could potentially offer a route to fault-tolerant quantum computing. To achieve fault tolerance, however, gate error rates must be reduced to below a certain threshold and, in general, correlated errors must be removed. Here we show that pulse engineering techniques can be used to reduce the average Clifford gate error rates for silicon quantum dot spin qubits down to 0.043%. This represents a factor of three improvement over state-of-the-art silicon quantum dot devices and extends the randomized benchmarking coherence time to 9.4 ms. By including tomographically complete measurements in our randomized benchmarking, we infer a higher-order feature of the noise called the unitarity, which measures the coherence of noise. This, in turn, allows us to theoretically predict that average gate error rates as low as 0.026% may be achievable with further pulse improvements. These spin qubit fidelities are ultimately limited by incoherent noise, which we attribute to charge noise from the silicon device structure or the environment.
引用
收藏
页码:151 / 158
页数:8
相关论文
共 34 条
[1]   Gate-defined quantum dots in intrinsic silicon [J].
Angus, Susan J. ;
Ferguson, Andrew J. ;
Dzurak, Andrew S. ;
Clark, Robert G. .
NANO LETTERS, 2007, 7 (07) :2051-2055
[2]   Effect of noise correlations on randomized benchmarking [J].
Ball, Harrison ;
Stace, Thomas M. ;
Flammia, Steven T. ;
Biercuk, Michael J. .
PHYSICAL REVIEW A, 2016, 93 (02)
[3]   Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits [J].
Ballance, C. J. ;
Harty, T. P. ;
Linke, N. M. ;
Sepiol, M. A. ;
Lucas, D. M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (06)
[4]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[5]   Assessment of a Silicon Quantum Dot Spin Qubit Environment via Noise Spectroscopy [J].
Chan, K. W. ;
Huang, W. ;
Yang, C. H. ;
Hwang, J. C. C. ;
Hensen, B. ;
Tanttu, T. ;
Hudson, F. E. ;
Itoh, K. M. ;
Laucht, A. ;
Morello, A. ;
Dzurak, A. S. .
PHYSICAL REVIEW APPLIED, 2018, 10 (04)
[6]   Exact and approximate unitary 2-designs and their application to fidelity estimation [J].
Dankert, Christoph ;
Cleve, Richard ;
Emerson, Joseph ;
Livine, Etera .
PHYSICAL REVIEW A, 2009, 80 (01)
[7]  
Dugas A. C., 2018, PREPRINT
[8]   Scalable noise estimation with random unitary operators [J].
Emerson, J ;
Alicki, R ;
Zyczkowski, K .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (10) :S347-S352
[9]   Estimating the Coherence of Noise in Quantum Control of a Solid-State Qubit [J].
Feng, Guanru ;
Wallman, Joel J. ;
Buonacorsi, Brandon ;
Cho, Franklin H. ;
Park, Daniel K. ;
Xin, Tao ;
Lu, Dawei ;
Baugh, Jonathan ;
Laflamme, Raymond .
PHYSICAL REVIEW LETTERS, 2016, 117 (26)
[10]   Nonexponential fidelity decay in randomized benchmarking with low-frequency noise [J].
Fogarty, M. A. ;
Veldhorst, M. ;
Harper, R. ;
Yang, C. H. ;
Bartlett, S. D. ;
Flammia, S. T. ;
Dzurak, A. S. .
PHYSICAL REVIEW A, 2015, 92 (02)