Sharp Jordan-type inequalities for Bessel functions

被引:0
作者
Baricz, Arpad [1 ]
Wu, Shanhe [2 ]
机构
[1] Univ Babes Bolyai, Fac Econ, Cluj Napoca 400591, Romania
[2] Longyan Coll, Dept Math, Longyan 364012, Fujian, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2009年 / 74卷 / 1-2期
关键词
Bessel functions; modified Bessel functions; spherical Bessel functions; modified spherical Bessel functions; Jordan-type inequalities; Kober-type inequalities; monotone form of l'Hospital's rule; Cauchy mean value theorem; circular functions; hyperbolic functions; Taylor theorem with Lagrange's form of the remainder; GENERAL REFINEMENT; IMPROVEMENT; VERSION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper our aim is to establish some sharp Jordan and Kober type inequalities for Bessel and modified Bessel functions of the first kind by using the monotone form of I'Hospital's rule. Moreover, by using the classical Cauchy mean value theorem inductively we deduce new series expansions for the Bessel and modified Bessel functions. These results extend and improve. many known results in the literature.
引用
收藏
页码:107 / 126
页数:20
相关论文
共 33 条
[1]  
Abramovitz M., 1965, HDB MATH FUNCTIONS F
[2]  
ANDERSON GD, 1993, PAC J MATH, V160, P1
[3]   Properties of the probability density function of the non-central chi-squared distribution [J].
Andras, Szilard ;
Baricz, Arpad .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 346 (02) :395-402
[4]  
[Anonymous], OCTOG MATH MAG
[5]  
[Anonymous], 2005, COMPUT METH FUNCT TH, DOI DOI 10.1007/BF03321104
[6]  
Baricz A., 2008, THESIS BABES BOLYAI
[7]  
Baricz A., 2008, J INEQUAL PURE APPL, V9
[8]  
BARICZ A, 2005, J INEQUAL PURE APPL, V6
[9]   Functional inequalities involving Bessel and modified Bessel functions of the first kind [J].
Baricz, Arpad .
EXPOSITIONES MATHEMATICAE, 2008, 26 (03) :279-293
[10]  
Baricz A, 2008, PUBL MATH-DEBRECEN, V73, P155