Harnack's Inequality for p-Harmonic Functions via Stochastic Games

被引:32
作者
Luiro, Hannes [1 ]
Parviainen, Mikko [1 ]
Saksman, Eero [2 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
[2] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Dynamic programming principle; Harnack inequality; Lipschitz estimates; p-harmonic; Stochastic games; Two-player zero-sum games; TUG-OF-WAR; ELLIPTIC DIFFERENTIAL EQUATIONS; MINIMIZING LIPSCHITZ EXTENSIONS; VISCOSITY SOLUTIONS; INFINITY LAPLACIAN; WEAK SOLUTIONS; REGULARITY; PROOF; EQUIVALENCE; THEOREM;
D O I
10.1080/03605302.2013.814068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a proof of asymptotic Lipschitz continuity of p-harmonious functions, that are tug-of-war game analogies of ordinary p-harmonic functions. This result is used to obtain a new proof of Lipschitz continuity and Harnack's inequality for p-harmonic functions in the case p>2. The proof avoids classical techniques like Moser iteration, but instead relies on suitable choices of strategies for the stochastic tug-of-war game.
引用
收藏
页码:1985 / 2003
页数:19
相关论文
共 28 条
[1]   An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions [J].
Armstrong, Scott N. ;
Smart, Charles K. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :381-384
[2]   A STOCHASTIC DIFFERENTIAL GAME FOR THE INHOMOGENEOUS ∞-LAPLACE EQUATION [J].
Atar, Rami ;
Budhiraja, Amarjit .
ANNALS OF PROBABILITY, 2010, 38 (02) :498-531
[3]  
De Giorgi E., 1957, Mem. Acad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., V3, P25
[5]  
DIBENEDETTO E, 1984, ANN I H POINCARE-AN, V1, P295
[7]  
Grimmett Geoffrey, 2020, Probability and random processes
[8]   A New Proof for the Equivalence of Weak and Viscosity Solutions for the p-Laplace Equation [J].
Julin, Vesa ;
Juutinen, Petri .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (05) :934-946
[9]   On the equivalence of viscosity solutions and weak solutions or a quasi-linear equation [J].
Juutinen, P ;
Lindqvist, P ;
Manfredi, JJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) :699-717
[10]   Regularity theory and traces of A-harmonic functions [J].
Koskela, P ;
Manfredi, JJ ;
Villamor, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (02) :755-766