Representations of Virasoro-Heisenberg algebras and Virasoro-toroidal algebras

被引:9
作者
Fabbri, MA [1 ]
Okoh, F
机构
[1] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1999年 / 51卷 / 03期
关键词
D O I
10.4153/CJM-1999-024-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Virasoro-toroidal algebras, ((J) over tilde)([n]), are semi-direct products of toroidal algebras J([n]) and the Virasoro algebra. The toroidal algebras are, in turn, multi-loop versions of affine Kac-Moody algebras. Let Gamma be an extension of a simply laced lattice Q by a hyperbolic lattice of rank two. There is a Fock space V(Gamma) corresponding to Gamma with a decomposition as a complex vector space: V(Gamma) = coproduct (m is an element of Z) K(m). Fabbri and Moody have shown that when m not equal 0, K(m) is an irreducible representation of (J) over tilde([2].) In this paper we produce a filtration of (J) over tilde([2])-submodules of K(0). When L is an arbitrary geometric lattice and n is a positive integer, we construct a Virasoro-Heisenberg algebra (H) over tilde(L, n). Let Q be an extension of Q by a degenerate rank one lattice. We determine the components of V(Gamma) that are irreducible (H) over tilde(Q, 1)-modules and we show that the reducible components have a filtration of (H) over tilde(Q, 1)-submodules with completely reducible quotients. Analogous results are obtained for (H) over tilde(Q, 2). These results complement and extend results of Fabbri and Moody.
引用
收藏
页码:523 / 545
页数:23
相关论文
共 17 条
[1]  
[Anonymous], NOTICES AM MATH SOC
[2]   ENVELOPING-ALGEBRAS AND REPRESENTATIONS OF TOROIDAL LIE-ALGEBRAS [J].
BERMAN, S ;
COX, B .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 165 (02) :239-267
[4]  
Fabbri M. A., 1992, C R MATH REP ACAD SC, V14, P77
[5]   IRREDUCIBLE REPRESENTATIONS OF VIRASORO-TOROIDAL LIE-ALGEBRAS [J].
FABBRI, MA ;
MOODY, RV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 159 (01) :1-13
[6]  
Frenkel I., 1988, VERTEX OPERATOR ALGE
[7]  
FRENKEL I, 1980, INVENT MATH, V63, P23
[8]  
GODDARD P, 1984, VERTEX OPERATORS MAT, V3, P51
[9]  
Kac V. G., 1987, Adv. Ser. Math. Phys., V2
[10]  
KASSEL C, 1985, J PURE APPL ALGEBRA, V34, P265