Myricetin is a natural flavonoid, particularly enriched in red wines, whose occurrence is widespread among plants. Despite extensive research, the beneficial effects of Myricetin on human health are still controversial. Here, we tested the estrogen-like effect of the phytoestrogen Myricetin on human ejaculated sperm biology. To this aim, human normozoospermic samples were exposed to increasing concentrations (10nM, 100nM, and 1 mu M) of Myricetin. Motility, viability, capacitation-associated biochemical changes (i.e., cholesterol efflux and tyrosine phosphorylation), acrosin activity, as well as glucose utilization and fatty-acid oxidation (i.e., glucose and lipid metabolism) were all significantly increased by low doses of Myricetin. Importantly, both estrogen receptors and (ERs) and phosphatidylinositol-3-OH kinase (PI3K)/AKT signaling are activated in the presence of Myricetin since these were both abrogated by specific inhibitors of each pathway. Our results show how Myricetin, through ERs and PI3K/AKT signalings, potentiates sperm function. This effect is dose-dependent at low concentrations of Myricetin (up to 100nM), whereas higher amounts do not seem to improve any further sperm motility, viability, or other tested features, and, in some cases, they reduced or even abrogated the efficacy exerted by lower doses. Further studies are needed to elucidate if high levels of Myricetin, which could be attained even with moderate wine consumption, could synergize with endogenous estrogens in the female reproductive tract, interfering with the physiological sperm fertilization process. Mol. Reprod. Dev. (c) 2012 Wiley Periodicals, Inc.