Functional Stimuli-Responsive Gels: Hydrogels and Microgels

被引:150
作者
Echeverria, Coro [1 ]
Fernandes, Susete N. [2 ]
Godinho, Maria H. [2 ]
Borges, Joao Paulo [2 ]
Soares, Paula I. P. [2 ]
机构
[1] CSIC, Inst Ciencia & Tecnol Polimeros, Calle Juan de la Cierva 3, Madrid 28006, Spain
[2] Univ Nova Lisboa, Fac Sci & Technol, Dept Mat Sci, I3N,CENIMAT, Campus Caparica, P-2829516 Caparica, Portugal
关键词
functional gels; hydrogels; microgels; hybrid microgels; stimuli-responsive; shape memory hydrogels; self-healing gels; VOLUME PHASE-TRANSITION; SELF-HEALING MATERIALS; HYBRID MICROGELS; SHAPE-MEMORY; DRUG-DELIVERY; MAGNETIC-PROPERTIES; SUPRAMOLECULAR HYDROGEL; SILVER NANOPARTICLES; METAL NANOPARTICLES; OXIDE NANOPARTICLES;
D O I
10.3390/gels4020054
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
One strategy that has gained much attention in the last decades is the understanding and further mimicking of structures and behaviours found in nature, as inspiration to develop materials with additional functionalities. This review presents recent advances in stimuli-responsive gels with emphasis on functional hydrogels and microgels. The first part of the review highlights the high impact of stimuli-responsive hydrogels in materials science. From macro to micro scale, the review also collects the most recent studies on the preparation of hybrid polymeric microgels composed of a nanoparticle (able to respond to external stimuli), encapsulated or grown into a stimuli-responsive matrix (microgel). This combination gave rise to interesting multi-responsive functional microgels and paved a new path for the preparation of multi-stimuli "smart" systems. Finally, special attention is focused on a new generation of functional stimuli-responsive polymer hydrogels able to self-shape (shape-memory) and/or self-repair. This last functionality could be considered as the closing loop for smart polymeric gels.
引用
收藏
页数:37
相关论文
共 229 条
[1]   Functional materials by electrospinning of polymers [J].
Agarwal, Seema ;
Greiner, Andreas ;
Wendorff, Joachim H. .
PROGRESS IN POLYMER SCIENCE, 2013, 38 (06) :963-991
[2]   Stimuli-Responsive Microgels and Microgel-Based Systems: Advances in the Exploitation of Microgel Colloidal Properties and Their Interfacial Activity [J].
Agrawal, Garima ;
Agrawal, Rahul .
POLYMERS, 2018, 10 (04)
[3]   Formation of catalytically active gold-polymer microgel hybrids via a controlled in situ reductive process [J].
Agrawal, Garima ;
Schuerings, Marco Philipp ;
van Rijn, Patrick ;
Pich, Andrij .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (42) :13244-13251
[4]   Microgel/SiO2 hybrid colloids prepared using a water soluble silica precursor [J].
Agrawal, Garima ;
Schuerings, Marco ;
Zhu, Xiaomin ;
Pich, Andrij .
POLYMER, 2012, 53 (06) :1189-1197
[5]   Stimuli-responsive polymer gels [J].
Ahn, Suk-Kyun ;
Kasi, Rajeswari M. ;
Kim, Seong-Cheol ;
Sharma, Nitin ;
Zhou, Yuxiang .
SOFT MATTER, 2008, 4 (06) :1151-1157
[6]   Cellulose-Based Biomimetics and Their Applications [J].
Almeida, Ana P. C. ;
Canejo, Joao P. ;
Fernandes, Susete N. ;
Echeverria, Coro ;
Almeida, Pedro L. ;
Godinho, Maria H. .
ADVANCED MATERIALS, 2018, 30 (19)
[7]   Stimuli responsive self-healing polymers: gels, elastomers and membranes [J].
Amaral, Aderito J. R. ;
Pasparakis, George .
POLYMER CHEMISTRY, 2017, 8 (42) :6464-6484
[8]   "Smart" nanoparticles: Preparation, characterization and applications [J].
Ballauff, Matthias ;
Lu, Yan .
POLYMER, 2007, 48 (07) :1815-1823
[9]   Thin and flexible bio-batteries made of electrospun cellulose-based membranes [J].
Baptista, A. C. ;
Martins, J. I. ;
Fortunato, E. ;
Martins, R. ;
Borges, J. P. ;
Ferreira, I. .
BIOSENSORS & BIOELECTRONICS, 2011, 26 (05) :2742-2745
[10]  
Baptista A, 2014, BIOENGINEERED NANOMATERIALS, P93