Heegaard splittings and Seiberg-Witten monopoles

被引:0
作者
Lee, YJ [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
来源
GEOMETRY AND TOPOLOGY OF MANIFOLDS | 2005年 / 47卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is an expansion on my talk at the Geometry and Topology conference at McMaster University, May 2004. We outline a program to relate the Heegaard Floer homologies of Ozsvath-Szabo, and Seiberg-Witten-Floer homologies as defined by Kronheimer-Mrowka. The center-piece of this program is the construction of an intermediate version of Floer theory, which exhibits characteristics of both theories.
引用
收藏
页码:173 / 202
页数:30
相关论文
共 28 条
[1]   THE MOMENT MAP AND EQUIVARIANT CO-HOMOLOGY [J].
ATIYAH, MF ;
BOTT, R .
TOPOLOGY, 1984, 23 (01) :1-28
[2]  
Bauer S.R., COMMUNICATION
[3]  
CABABAI E, 1969, INTRINSIC CHARACTERI
[4]  
Cappell SE, 1996, COMMUN PUR APPL MATH, V49, P825, DOI 10.1002/(SICI)1097-0312(199608)49:8<825::AID-CPA3>3.0.CO
[5]  
2-A
[6]  
COHEN R, 1995, FLOERS INFINIITE DIM
[7]  
Donaldson S. K., 2002, CAMB TRACT MATH, V147
[8]   SELF-DUAL INSTANTONS AND HOLOMORPHIC-CURVES [J].
DOSTOGLOU, S ;
SALAMON, DA .
ANNALS OF MATHEMATICS, 1994, 139 (03) :581-640
[9]  
Eliashberg Y, 2000, GEOM FUNCT ANAL, P560
[10]   Monopoles over 4-manifolds containing long necks, I [J].
Froyshov, KA .
GEOMETRY & TOPOLOGY, 2005, 9 :1-93