Semiclassical propagator of the Wigner function

被引:46
作者
Dittrich, T [1 ]
Viviescas, C
Sandoval, L
机构
[1] Univ Nacl Bogota, Dept Fis, Bogota, Colombia
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
D O I
10.1103/PhysRevLett.96.070403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Propagation of the Wigner function is studied on two levels of semiclassical propagation: one based on the Van Vleck propagator, the other on phase-space path integration. Leading quantum corrections to the classical Liouville propagator take the form of a time-dependent quantum spot. Its oscillatory structure depends on whether the underlying classical flow is elliptic or hyperbolic. It can be interpreted as the result of interference of a pair of classical trajectories, indicating how quantum coherences are to be propagated semiclassically in phase space. The phase-space path-integral approach allows for a finer resolution of the quantum spot in terms of Airy functions.
引用
收藏
页数:4
相关论文
共 18 条
[1]   Wigner function for discrete phase space:: Exorcising ghost images [J].
Argüelles, A ;
Dittrich, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (01) :72-77
[2]   Semiclassical approximations in phase space with coherent states [J].
Baranger, M ;
de Aguiar, MAM ;
Keck, F ;
Korsch, HJ ;
Schellhaass, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (36) :7227-7286
[3]   QUANTUM MAPS [J].
BERRY, MV ;
BALAZS, NL ;
TABOR, M ;
VOROS, A .
ANNALS OF PHYSICS, 1979, 122 (01) :26-63
[4]   QUANTUM SCARS OF CLASSICAL CLOSED ORBITS IN PHASE-SPACE [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1989, 423 (1864) :219-231
[5]   DESTRUCTION OF LOCALIZATION DUE TO COUPLING TO A BATH IN THE KICKED-ROTATOR PROBLEM [J].
COHEN, D .
PHYSICAL REVIEW A, 1991, 43 (02) :639-645
[6]  
de Almeida A. M. O., 1998, Physics Reports, V295, P265, DOI 10.1016/S0370-1573(97)00070-7
[7]   LONG-TIME BEHAVIOR IN THE QUANTIZED STANDARD MAP WITH DISSIPATION [J].
DITTRICH, T ;
GRAHAM, R .
ANNALS OF PHYSICS, 1990, 200 (02) :363-421
[8]  
DITTRICH T, IN PRESS
[9]   Solving quantum master equations in phase space by continued-fraction methods [J].
García-Palacios, JL .
EUROPHYSICS LETTERS, 2004, 65 (06) :735-741
[10]   TIME-DEPENDENT APPROACH TO SEMICLASSICAL DYNAMICS [J].
HELLER, EJ .
JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (04) :1544-1555