An Efficient Numerical Method for the Symmetric Positive Definite Second-Order Cone Linear Complementarity Problem

被引:14
作者
Wang, Xiang [1 ]
Li, Xing [2 ]
Zhang, Lei-Hong [3 ]
Li, Ren-Cang [4 ]
机构
[1] Nanchang Univ, Dept Math, 999 Xuefu Rd, Nanchang 330031, Jiangxi, Peoples R China
[2] Shanghai Univ Finance & Econ, Sch Math, 777 Guoding Rd, Shanghai 200433, Peoples R China
[3] Soochow Univ, Sch Math Sci, Suzhou 215006, Jiangsu, Peoples R China
[4] Univ Texas Arlington, Dept Math, POB 19408, Arlington, TX 76019 USA
基金
中国国家自然科学基金;
关键词
Second-order cone; Linear complementarity problem; SOCLCP; Globally uniquely solvable property; GUS;
D O I
10.1007/s10915-019-00907-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An efficient numerical method for solving a symmetric positive definite second-order cone linear complementarity problem (SOCLCP) is proposed. The method is shown to be more efficient than recently developed iterative methods for small-to-medium sized and dense SOCLCP. Therefore it can serve as an excellent core computational engine in solutions of large scale symmetric positive definite SOCLCP solved by subspace projection methods, solutions of general SOCLCP and the quadratic programming over a Cartesian product of multiple second-order cones, in which small-to-medium sized SOCLCPs have to be solved repeatedly, efficiently, and robustly.
引用
收藏
页码:1608 / 1629
页数:22
相关论文
共 38 条
[1]   Second-order cone programming [J].
Alizadeh, F ;
Goldfarb, D .
MATHEMATICAL PROGRAMMING, 2003, 95 (01) :3-51
[2]  
[Anonymous], 1999, LAPACK users' guide third
[3]  
AUSLENDER A, 1968, SOFT, V18, P359, DOI DOI 10.1080/1055678031000122586
[4]  
Bertsekas D. P., 2019, Reinforcement Learning and Optimal Control
[5]   A block active set algorithm with spectral choice line search for the symmetric eigenvalue complementarity problem [J].
Bras, Carmo P. ;
Fischer, Andreas ;
Judice, Joaquim J. ;
Schoenefeld, Klaus ;
Seifert, Sarah .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 294 :36-48
[6]   RANK-ONE MODIFICATION OF SYMMETRIC EIGENPROBLEM [J].
BUNCH, JR ;
NIELSEN, CP ;
SORENSEN, DC .
NUMERISCHE MATHEMATIK, 1978, 31 (01) :31-48
[7]   An unconstrained smooth minimization reformulation of the second-order cone complementarity problem [J].
Chen, JS ;
Tseng, P .
MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) :293-327
[8]   Complementarity functions and numerical experiments on some smoothing newton methods for second-order-cone complementarity problems [J].
Chen, XD ;
Sun, D ;
Sun, J .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2003, 25 (1-3) :39-56
[9]  
CUPPEN JJM, 1981, NUMER MATH, V36, P177, DOI 10.1007/BF01396757
[10]  
FERNANDES LM, 1938, SOFT, V31, P24, DOI DOI 10.1080/10556788.2015.1040156